Spaces:
Sleeping
Sleeping
import warnings | |
warnings.filterwarnings('ignore') | |
warnings.simplefilter('ignore') | |
import torch | |
import cv2 | |
import numpy as np | |
import torchvision.transforms as transforms | |
from pytorch_grad_cam import EigenCAM | |
from pytorch_grad_cam.utils.image import show_cam_on_image, scale_cam_image | |
from PIL import Image | |
import gradio as gr | |
from ultralytics import YOLO | |
# Load a COCO-pretrained YOLOv3n model | |
# Global Color Palette | |
COLORS = np.random.uniform(0, 255, size=(80, 3)) | |
# Function to parse YOLO detections | |
def parse_detections(results): | |
detections = results.pandas().xyxy[0].to_dict() | |
boxes, colors, names = [], [], [] | |
for i in range(len(detections["xmin"])): | |
confidence = detections["confidence"][i] | |
if confidence < 0.2: | |
continue | |
xmin, ymin = int(detections["xmin"][i]), int(detections["ymin"][i]) | |
xmax, ymax = int(detections["xmax"][i]), int(detections["ymax"][i]) | |
name, category = detections["name"][i], int(detections["class"][i]) | |
boxes.append((xmin, ymin, xmax, ymax)) | |
colors.append(COLORS[category]) | |
names.append(name) | |
return boxes, colors, names | |
# Draw bounding boxes and labels | |
def draw_detections(boxes, colors, names, img): | |
for box, color, name in zip(boxes, colors, names): | |
xmin, ymin, xmax, ymax = box | |
cv2.rectangle(img, (xmin, ymin), (xmax, ymax), color, 2) | |
cv2.putText(img, name, (xmin, ymin - 5), | |
cv2.FONT_HERSHEY_SIMPLEX, 0.8, color, 2, | |
lineType=cv2.LINE_AA) | |
return img | |
# Load the appropriate YOLO model based on the version | |
def load_yolo_model(version="yolov5"): | |
if version == "yolov3": | |
model = YOLO("yolov3n.pt") | |
elif version == "yolov5": | |
model = torch.hub.load('ultralytics/yolov5', 'yolov5s', pretrained=True) | |
elif version == "yolov7": | |
model = torch.hub.load('WongKinYiu/yolov7', 'yolov7', pretrained=True) | |
elif version == "yolov8": | |
model = torch.hub.load('ultralytics/yolov5:v7.0', 'yolov5', pretrained=True) # YOLOv8 is part of the yolov5 repo starting from v7.0 | |
elif version == "yolov10": | |
model = torch.hub.load('ultralytics/yolov5', 'yolov5m', pretrained=True) # Placeholder for YOLOv10 (use an appropriate version if available) | |
else: | |
raise ValueError(f"Unsupported YOLO version: {version}") | |
model.eval() # Set to evaluation mode | |
model.cpu() | |
return model | |
# Main function for Grad-CAM visualization | |
# Main function for Grad-CAM visualization | |
def process_image(image, yolo_versions=["yolov5"]): | |
image = np.array(image) | |
image = cv2.resize(image, (640, 640)) | |
rgb_img = image.copy() | |
img_float = np.float32(image) / 255 | |
# Image transformation | |
transform = transforms.ToTensor() | |
tensor = transform(img_float).unsqueeze(0) | |
# Initialize list to store result images with captions | |
result_images = [] | |
# Process each selected YOLO model | |
for yolo_version in yolo_versions: | |
# Load the model based on YOLO version | |
model = load_yolo_model(yolo_version) | |
target_layers = [model.model.model.model[-2]] # Assumes last layer is used for Grad-CAM | |
# Run YOLO detection | |
results = model([rgb_img]) | |
boxes, colors, names = parse_detections(results) | |
detections_img = draw_detections(boxes, colors, names, rgb_img.copy()) | |
# Grad-CAM visualization | |
cam = EigenCAM(model, target_layers) | |
grayscale_cam = cam(tensor)[0, :, :] | |
cam_image = show_cam_on_image(img_float, grayscale_cam, use_rgb=True) | |
# Renormalize Grad-CAM inside bounding boxes | |
renormalized_cam = np.zeros(grayscale_cam.shape, dtype=np.float32) | |
for x1, y1, x2, y2 in boxes: | |
renormalized_cam[y1:y2, x1:x2] = scale_cam_image(grayscale_cam[y1:y2, x1:x2].copy()) | |
renormalized_cam = scale_cam_image(renormalized_cam) | |
renormalized_cam_image = show_cam_on_image(img_float, renormalized_cam, use_rgb=True) | |
# Concatenate images and prepare the caption | |
final_image = np.hstack((rgb_img, cam_image, renormalized_cam_image)) | |
caption = f"Results using {yolo_version}" | |
result_images.append((Image.fromarray(final_image), caption)) | |
return result_images | |
interface = gr.Interface( | |
fn=process_image, | |
inputs=[ | |
gr.Image(type="pil", label="Upload an Image"), | |
gr.CheckboxGroup( | |
choices=["yolov3", "yolov5", "yolov7", "yolov8", "yolov10"], | |
value=["yolov5"], # Set the default value (YOLOv5 checked by default) | |
label="Select Model(s)", | |
) | |
], | |
outputs = gr.Gallery(label="Results", elem_id="gallery", rows=2, height=500), | |
title="Visualising the key image features that drive decisions with our explainable AI tool.", | |
description="XAI: Upload an image to visualize object detection of your models.." | |
) | |
if __name__ == "__main__": | |
interface.launch() |