NeuralVista / app.py
BhumikaMak's picture
Fix: yolo3 dependency
59d2287
raw
history blame
4.95 kB
import warnings
warnings.filterwarnings('ignore')
warnings.simplefilter('ignore')
import torch
import cv2
import numpy as np
import torchvision.transforms as transforms
from pytorch_grad_cam import EigenCAM
from pytorch_grad_cam.utils.image import show_cam_on_image, scale_cam_image
from PIL import Image
import gradio as gr
from ultralytics import YOLO
# Load a COCO-pretrained YOLOv3n model
# Global Color Palette
COLORS = np.random.uniform(0, 255, size=(80, 3))
# Function to parse YOLO detections
def parse_detections(results):
detections = results.pandas().xyxy[0].to_dict()
boxes, colors, names = [], [], []
for i in range(len(detections["xmin"])):
confidence = detections["confidence"][i]
if confidence < 0.2:
continue
xmin, ymin = int(detections["xmin"][i]), int(detections["ymin"][i])
xmax, ymax = int(detections["xmax"][i]), int(detections["ymax"][i])
name, category = detections["name"][i], int(detections["class"][i])
boxes.append((xmin, ymin, xmax, ymax))
colors.append(COLORS[category])
names.append(name)
return boxes, colors, names
# Draw bounding boxes and labels
def draw_detections(boxes, colors, names, img):
for box, color, name in zip(boxes, colors, names):
xmin, ymin, xmax, ymax = box
cv2.rectangle(img, (xmin, ymin), (xmax, ymax), color, 2)
cv2.putText(img, name, (xmin, ymin - 5),
cv2.FONT_HERSHEY_SIMPLEX, 0.8, color, 2,
lineType=cv2.LINE_AA)
return img
# Load the appropriate YOLO model based on the version
def load_yolo_model(version="yolov5"):
if version == "yolov3":
model = YOLO("yolov3n.pt")
elif version == "yolov5":
model = torch.hub.load('ultralytics/yolov5', 'yolov5s', pretrained=True)
elif version == "yolov7":
model = torch.hub.load('WongKinYiu/yolov7', 'yolov7', pretrained=True)
elif version == "yolov8":
model = torch.hub.load('ultralytics/yolov5:v7.0', 'yolov5', pretrained=True) # YOLOv8 is part of the yolov5 repo starting from v7.0
elif version == "yolov10":
model = torch.hub.load('ultralytics/yolov5', 'yolov5m', pretrained=True) # Placeholder for YOLOv10 (use an appropriate version if available)
else:
raise ValueError(f"Unsupported YOLO version: {version}")
model.eval() # Set to evaluation mode
model.cpu()
return model
# Main function for Grad-CAM visualization
# Main function for Grad-CAM visualization
def process_image(image, yolo_versions=["yolov5"]):
image = np.array(image)
image = cv2.resize(image, (640, 640))
rgb_img = image.copy()
img_float = np.float32(image) / 255
# Image transformation
transform = transforms.ToTensor()
tensor = transform(img_float).unsqueeze(0)
# Initialize list to store result images with captions
result_images = []
# Process each selected YOLO model
for yolo_version in yolo_versions:
# Load the model based on YOLO version
model = load_yolo_model(yolo_version)
target_layers = [model.model.model.model[-2]] # Assumes last layer is used for Grad-CAM
# Run YOLO detection
results = model([rgb_img])
boxes, colors, names = parse_detections(results)
detections_img = draw_detections(boxes, colors, names, rgb_img.copy())
# Grad-CAM visualization
cam = EigenCAM(model, target_layers)
grayscale_cam = cam(tensor)[0, :, :]
cam_image = show_cam_on_image(img_float, grayscale_cam, use_rgb=True)
# Renormalize Grad-CAM inside bounding boxes
renormalized_cam = np.zeros(grayscale_cam.shape, dtype=np.float32)
for x1, y1, x2, y2 in boxes:
renormalized_cam[y1:y2, x1:x2] = scale_cam_image(grayscale_cam[y1:y2, x1:x2].copy())
renormalized_cam = scale_cam_image(renormalized_cam)
renormalized_cam_image = show_cam_on_image(img_float, renormalized_cam, use_rgb=True)
# Concatenate images and prepare the caption
final_image = np.hstack((rgb_img, cam_image, renormalized_cam_image))
caption = f"Results using {yolo_version}"
result_images.append((Image.fromarray(final_image), caption))
return result_images
interface = gr.Interface(
fn=process_image,
inputs=[
gr.Image(type="pil", label="Upload an Image"),
gr.CheckboxGroup(
choices=["yolov3", "yolov5", "yolov7", "yolov8", "yolov10"],
value=["yolov5"], # Set the default value (YOLOv5 checked by default)
label="Select Model(s)",
)
],
outputs = gr.Gallery(label="Results", elem_id="gallery", rows=2, height=500),
title="Visualising the key image features that drive decisions with our explainable AI tool.",
description="XAI: Upload an image to visualize object detection of your models.."
)
if __name__ == "__main__":
interface.launch()