Spaces:
Sleeping
Sleeping
Commit
·
4d56ecd
1
Parent(s):
5e54341
Fix: figure canvas args
Browse files
yolov5.py
CHANGED
@@ -1,20 +1,14 @@
|
|
1 |
|
2 |
import torch
|
3 |
import cv2
|
4 |
-
import os
|
5 |
-
import warnings
|
6 |
-
warnings.filterwarnings('ignore')
|
7 |
import numpy as np
|
8 |
from PIL import Image
|
9 |
import torchvision.transforms as transforms
|
10 |
from pytorch_grad_cam import EigenCAM
|
11 |
from pytorch_grad_cam.utils.image import show_cam_on_image, scale_cam_image
|
12 |
import gradio as gr
|
13 |
-
import
|
14 |
-
|
15 |
-
from pytorch_grad_cam import DeepFeatureFactorization
|
16 |
-
from pytorch_grad_cam.utils.image import show_cam_on_image, preprocess_image
|
17 |
-
from pytorch_grad_cam.utils.image import deprocess_image, show_factorization_on_image
|
18 |
COLORS = np.random.uniform(0, 255, size=(80, 3))
|
19 |
|
20 |
|
@@ -88,6 +82,20 @@ def xai_yolov5(image):
|
|
88 |
return Image.fromarray(final_image), caption
|
89 |
|
90 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
# Check if CUDA is available
|
92 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
93 |
mean = [0.485, 0.456, 0.406] # Mean for RGB channels
|
|
|
1 |
|
2 |
import torch
|
3 |
import cv2
|
|
|
|
|
|
|
4 |
import numpy as np
|
5 |
from PIL import Image
|
6 |
import torchvision.transforms as transforms
|
7 |
from pytorch_grad_cam import EigenCAM
|
8 |
from pytorch_grad_cam.utils.image import show_cam_on_image, scale_cam_image
|
9 |
import gradio as gr
|
10 |
+
import os
|
11 |
+
# Global Color Palette
|
|
|
|
|
|
|
12 |
COLORS = np.random.uniform(0, 255, size=(80, 3))
|
13 |
|
14 |
|
|
|
82 |
return Image.fromarray(final_image), caption
|
83 |
|
84 |
|
85 |
+
|
86 |
+
import yaml
|
87 |
+
import torch
|
88 |
+
import warnings
|
89 |
+
warnings.filterwarnings('ignore')
|
90 |
+
from PIL import Image
|
91 |
+
import numpy as np
|
92 |
+
import requests
|
93 |
+
import cv2
|
94 |
+
import torch
|
95 |
+
from pytorch_grad_cam import DeepFeatureFactorization
|
96 |
+
from pytorch_grad_cam.utils.image import show_cam_on_image, preprocess_image
|
97 |
+
from pytorch_grad_cam.utils.image import deprocess_image, show_factorization_on_image
|
98 |
+
|
99 |
# Check if CUDA is available
|
100 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
101 |
mean = [0.485, 0.456, 0.406] # Mean for RGB channels
|