BhumikaMak commited on
Commit
4d56ecd
·
1 Parent(s): 5e54341

Fix: figure canvas args

Browse files
Files changed (1) hide show
  1. yolov5.py +16 -8
yolov5.py CHANGED
@@ -1,20 +1,14 @@
1
 
2
  import torch
3
  import cv2
4
- import os
5
- import warnings
6
- warnings.filterwarnings('ignore')
7
  import numpy as np
8
  from PIL import Image
9
  import torchvision.transforms as transforms
10
  from pytorch_grad_cam import EigenCAM
11
  from pytorch_grad_cam.utils.image import show_cam_on_image, scale_cam_image
12
  import gradio as gr
13
- import yaml
14
- import requests
15
- from pytorch_grad_cam import DeepFeatureFactorization
16
- from pytorch_grad_cam.utils.image import show_cam_on_image, preprocess_image
17
- from pytorch_grad_cam.utils.image import deprocess_image, show_factorization_on_image
18
  COLORS = np.random.uniform(0, 255, size=(80, 3))
19
 
20
 
@@ -88,6 +82,20 @@ def xai_yolov5(image):
88
  return Image.fromarray(final_image), caption
89
 
90
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
91
  # Check if CUDA is available
92
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
93
  mean = [0.485, 0.456, 0.406] # Mean for RGB channels
 
1
 
2
  import torch
3
  import cv2
 
 
 
4
  import numpy as np
5
  from PIL import Image
6
  import torchvision.transforms as transforms
7
  from pytorch_grad_cam import EigenCAM
8
  from pytorch_grad_cam.utils.image import show_cam_on_image, scale_cam_image
9
  import gradio as gr
10
+ import os
11
+ # Global Color Palette
 
 
 
12
  COLORS = np.random.uniform(0, 255, size=(80, 3))
13
 
14
 
 
82
  return Image.fromarray(final_image), caption
83
 
84
 
85
+
86
+ import yaml
87
+ import torch
88
+ import warnings
89
+ warnings.filterwarnings('ignore')
90
+ from PIL import Image
91
+ import numpy as np
92
+ import requests
93
+ import cv2
94
+ import torch
95
+ from pytorch_grad_cam import DeepFeatureFactorization
96
+ from pytorch_grad_cam.utils.image import show_cam_on_image, preprocess_image
97
+ from pytorch_grad_cam.utils.image import deprocess_image, show_factorization_on_image
98
+
99
  # Check if CUDA is available
100
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
101
  mean = [0.485, 0.456, 0.406] # Mean for RGB channels