Spaces:
Sleeping
Sleeping
Commit
·
71b8b5d
1
Parent(s):
862de68
Add: support for yolov8
Browse files
app.py
CHANGED
@@ -4,6 +4,7 @@ from PIL import Image
|
|
4 |
import torchvision.transforms as transforms
|
5 |
import gradio as gr
|
6 |
from yolov5 import xai_yolov5
|
|
|
7 |
|
8 |
def process_image(image, yolo_versions=["yolov5"]):
|
9 |
image = np.array(image)
|
@@ -13,6 +14,8 @@ def process_image(image, yolo_versions=["yolov5"]):
|
|
13 |
for yolo_version in yolo_versions:
|
14 |
if yolo_version == "yolov5":
|
15 |
result_images.append(xai_yolov5(image))
|
|
|
|
|
16 |
else:
|
17 |
result_images.append((Image.fromarray(image), f"{yolo_version} not yet implemented."))
|
18 |
return result_images
|
@@ -23,7 +26,7 @@ interface = gr.Interface(
|
|
23 |
inputs=[
|
24 |
gr.Image(type="pil", label="Upload an Image"),
|
25 |
gr.CheckboxGroup(
|
26 |
-
choices=["
|
27 |
value=["yolov5"], # Set default selection to YOLOv5
|
28 |
label="Select Model(s)",
|
29 |
)
|
|
|
4 |
import torchvision.transforms as transforms
|
5 |
import gradio as gr
|
6 |
from yolov5 import xai_yolov5
|
7 |
+
from yolov8 import xai_yolov8
|
8 |
|
9 |
def process_image(image, yolo_versions=["yolov5"]):
|
10 |
image = np.array(image)
|
|
|
14 |
for yolo_version in yolo_versions:
|
15 |
if yolo_version == "yolov5":
|
16 |
result_images.append(xai_yolov5(image))
|
17 |
+
elif yolo_version == "yolov8":
|
18 |
+
result_images.append(xai_yolov8(image))
|
19 |
else:
|
20 |
result_images.append((Image.fromarray(image), f"{yolo_version} not yet implemented."))
|
21 |
return result_images
|
|
|
26 |
inputs=[
|
27 |
gr.Image(type="pil", label="Upload an Image"),
|
28 |
gr.CheckboxGroup(
|
29 |
+
choices=["yolov5", "yolov8", "yolov10"],
|
30 |
value=["yolov5"], # Set default selection to YOLOv5
|
31 |
label="Select Model(s)",
|
32 |
)
|
yolov8.py
ADDED
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import cv2
|
3 |
+
import numpy as np
|
4 |
+
from PIL import Image
|
5 |
+
import torchvision.transforms as transforms
|
6 |
+
from pytorch_grad_cam import EigenCAM
|
7 |
+
from pytorch_grad_cam.utils.image import show_cam_on_image, scale_cam_image
|
8 |
+
from ultralytics import YOLO
|
9 |
+
|
10 |
+
COLORS = np.random.uniform(0, 255, size=(80, 3))
|
11 |
+
def parse_detections_yolov8(results):
|
12 |
+
boxes, colors, names = [], [], []
|
13 |
+
detections = results.boxes
|
14 |
+
for box in detections:
|
15 |
+
confidence = box.conf[0].item()
|
16 |
+
if confidence < 0.2:
|
17 |
+
continue
|
18 |
+
xmin, ymin, xmax, ymax = map(int, box.xyxy[0].tolist())
|
19 |
+
category = int(box.cls[0].item())
|
20 |
+
name = results.names[category]
|
21 |
+
boxes.append((xmin, ymin, xmax, ymax))
|
22 |
+
colors.append(COLORS[category])
|
23 |
+
names.append(name)
|
24 |
+
return boxes, colors, names
|
25 |
+
|
26 |
+
|
27 |
+
def draw_detections(boxes, colors, names, img):
|
28 |
+
for box, color, name in zip(boxes, colors, names):
|
29 |
+
xmin, ymin, xmax, ymax = box
|
30 |
+
cv2.rectangle(img, (xmin, ymin), (xmax, ymax), color, 2)
|
31 |
+
cv2.putText(img, name, (xmin, ymin - 5),
|
32 |
+
cv2.FONT_HERSHEY_SIMPLEX, 0.8, color, 2,
|
33 |
+
lineType=cv2.LINE_AA)
|
34 |
+
return img
|
35 |
+
|
36 |
+
|
37 |
+
def generate_cam_image(model, target_layers, tensor, rgb_img, boxes):
|
38 |
+
cam = EigenCAM(model, target_layers)
|
39 |
+
grayscale_cam = cam(tensor)[0, :, :]
|
40 |
+
img_float = np.float32(rgb_img) / 255
|
41 |
+
|
42 |
+
# Generate Grad-CAM
|
43 |
+
cam_image = show_cam_on_image(img_float, grayscale_cam, use_rgb=True)
|
44 |
+
|
45 |
+
# Renormalize Grad-CAM inside bounding boxes
|
46 |
+
renormalized_cam = np.zeros(grayscale_cam.shape, dtype=np.float32)
|
47 |
+
for x1, y1, x2, y2 in boxes:
|
48 |
+
renormalized_cam[y1:y2, x1:x2] = scale_cam_image(grayscale_cam[y1:y2, x1:x2].copy())
|
49 |
+
renormalized_cam = scale_cam_image(renormalized_cam)
|
50 |
+
renormalized_cam_image = show_cam_on_image(img_float, renormalized_cam, use_rgb=True)
|
51 |
+
|
52 |
+
return cam_image, renormalized_cam_image
|
53 |
+
|
54 |
+
|
55 |
+
def xai_yolov8(image):
|
56 |
+
# Load YOLOv8 model
|
57 |
+
model = YOLO('yolov8n.pt') # Load YOLOv8 nano model
|
58 |
+
model.to('cpu')
|
59 |
+
model.eval()
|
60 |
+
|
61 |
+
# Run YOLO detection
|
62 |
+
results = model(image)
|
63 |
+
boxes, colors, names = parse_detections_yolov8(results[0])
|
64 |
+
detections_img = draw_detections(boxes, colors, names, image.copy())
|
65 |
+
|
66 |
+
# Prepare input tensor for Grad-CAM
|
67 |
+
img_float = np.float32(image) / 255
|
68 |
+
transform = transforms.ToTensor()
|
69 |
+
tensor = transform(img_float).unsqueeze(0)
|
70 |
+
|
71 |
+
# Grad-CAM visualization
|
72 |
+
target_layers = [model.model.model[-2]] # Adjust the target layer if required
|
73 |
+
cam_image, renormalized_cam_image = generate_cam_image(model.model, target_layers, tensor, image, boxes)
|
74 |
+
|
75 |
+
# Combine results
|
76 |
+
final_image = np.hstack((image, cam_image, renormalized_cam_image))
|
77 |
+
caption = "Results using YOLOv8"
|
78 |
+
return Image.fromarray(final_image), caption
|