BhumikaMak commited on
Commit
e4a2983
·
1 Parent(s): 4b26edc

Add: DFF support

Browse files
Files changed (1) hide show
  1. yolov5.py +163 -0
yolov5.py ADDED
@@ -0,0 +1,163 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ import torch
3
+ import cv2
4
+ import warnings
5
+ warnings.filterwarnings('ignore')
6
+ import numpy as np
7
+ from PIL import Image
8
+ import torchvision.transforms as transforms
9
+ from pytorch_grad_cam import EigenCAM
10
+ from pytorch_grad_cam.utils.image import show_cam_on_image, scale_cam_image
11
+ import gradio as gr
12
+ import yaml
13
+ import requests
14
+ from pytorch_grad_cam import DeepFeatureFactorization
15
+ from pytorch_grad_cam.utils.image import show_cam_on_image, preprocess_image
16
+ from pytorch_grad_cam.utils.image import deprocess_image, show_factorization_on_image
17
+ COLORS = np.random.uniform(0, 255, size=(80, 3))
18
+
19
+
20
+ def parse_detections(results):
21
+ detections = results.pandas().xyxy[0].to_dict()
22
+ boxes, colors, names, classes = [], [], [], []
23
+ for i in range(len(detections["xmin"])):
24
+ confidence = detections["confidence"][i]
25
+ if confidence < 0.2:
26
+ continue
27
+ xmin, ymin = int(detections["xmin"][i]), int(detections["ymin"][i])
28
+ xmax, ymax = int(detections["xmax"][i]), int(detections["ymax"][i])
29
+ name, category = detections["name"][i], int(detections["class"][i])
30
+ boxes.append((xmin, ymin, xmax, ymax))
31
+ colors.append(COLORS[category])
32
+ names.append(name)
33
+ classes.append(category)
34
+ return boxes, colors, names, classes
35
+
36
+
37
+ def draw_detections(boxes, colors, names, classes, img):
38
+ for box, color, name, cls in zip(boxes, colors, names, classes):
39
+ xmin, ymin, xmax, ymax = box
40
+ label = f"{cls}: {name}" # Combine class ID and name
41
+ cv2.rectangle(img, (xmin, ymin), (xmax, ymax), color, 2)
42
+ cv2.putText(
43
+ img, label, (xmin, ymin - 5),
44
+ cv2.FONT_HERSHEY_SIMPLEX, 0.8, color, 2,
45
+ lineType=cv2.LINE_AA
46
+ )
47
+ return img
48
+
49
+
50
+ def generate_cam_image(model, target_layers, tensor, rgb_img, boxes):
51
+ cam = EigenCAM(model, target_layers)
52
+ grayscale_cam = cam(tensor)[0, :, :]
53
+ img_float = np.float32(rgb_img) / 255
54
+ cam_image = show_cam_on_image(img_float, grayscale_cam, use_rgb=True)
55
+ renormalized_cam = np.zeros(grayscale_cam.shape, dtype=np.float32)
56
+ for x1, y1, x2, y2 in boxes:
57
+ renormalized_cam[y1:y2, x1:x2] = scale_cam_image(grayscale_cam[y1:y2, x1:x2].copy())
58
+ renormalized_cam = scale_cam_image(renormalized_cam)
59
+ renormalized_cam_image = show_cam_on_image(img_float, renormalized_cam, use_rgb=True)
60
+
61
+ return cam_image, renormalized_cam_image
62
+
63
+
64
+ def xai_yolov5(image):
65
+ model = torch.hub.load('ultralytics/yolov5', 'yolov5s', pretrained=True)
66
+ model.eval()
67
+ model.cpu()
68
+
69
+ target_layers = [model.model.model.model[-2]] # Grad-CAM target layer
70
+
71
+ # Run YOLO detection
72
+ results = model([image])
73
+ boxes, colors, names, classes = parse_detections(results)
74
+ detections_img = draw_detections(boxes, colors, names,classes, image.copy())
75
+
76
+ # Prepare input tensor for Grad-CAM
77
+ img_float = np.float32(image) / 255
78
+ transform = transforms.ToTensor()
79
+ tensor = transform(img_float).unsqueeze(0)
80
+
81
+ # Grad-CAM visualization
82
+ cam_image, renormalized_cam_image = generate_cam_image(model, target_layers, tensor, image, boxes)
83
+
84
+ # Combine results
85
+ final_image = np.hstack((image, detections_img, renormalized_cam_image))
86
+ caption = "Results using YOLOv5"
87
+ return Image.fromarray(final_image), caption
88
+
89
+
90
+ # Check if CUDA is available
91
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
92
+ mean = [0.485, 0.456, 0.406] # Mean for RGB channels
93
+ std = [0.229, 0.224, 0.225] # Standard deviation for RGB channels
94
+ # Load YOLOv5 model and move it to the appropriate device
95
+ model = torch.hub.load('ultralytics/yolov5', 'yolov5s', pretrained=True).to(device)
96
+ print(f"Loaded YOLOv5 model on {device}")
97
+ def create_labels(concept_scores, top_k=2):
98
+ """Create a list with the category names of the top scoring categories."""
99
+ yolov5_categories_url = \
100
+ "https://github.com/ultralytics/yolov5/raw/master/data/coco128.yaml" # URL to the YOLOv5 categories file
101
+ yaml_data = requests.get(yolov5_categories_url).text
102
+ labels = yaml.safe_load(yaml_data)['names'] # Parse the YAML file to get class names
103
+
104
+ concept_categories = np.argsort(concept_scores, axis=1)[:, ::-1][:, :top_k]
105
+ concept_labels_topk = []
106
+ for concept_index in range(concept_categories.shape[0]):
107
+ categories = concept_categories[concept_index, :]
108
+ concept_labels = []
109
+ for category in categories:
110
+ score = concept_scores[concept_index, category]
111
+ label = f"{labels[category]}:{score:.2f}"
112
+ concept_labels.append(label)
113
+ concept_labels_topk.append("\n".join(concept_labels))
114
+ return concept_labels_topk
115
+
116
+ def get_image_from_url(url, device):
117
+ """A function that gets a URL of an image,
118
+ and returns a numpy image and a preprocessed
119
+ torch tensor ready to pass to the model"""
120
+
121
+ img = np.array(Image.open("/home/drovco/Bhumika/NeuralVista/data/xai/sample1.jpeg"))
122
+ img = cv2.resize(img, (640, 640))
123
+ rgb_img_float = np.float32(img) /255.0
124
+ input_tensor = torch.from_numpy(rgb_img_float).permute(2, 0, 1).unsqueeze(0).to(device)
125
+ return img, rgb_img_float, input_tensor
126
+
127
+ def visualize_image(model, img_url, n_components=20, top_k=1, lyr_idx = 2):
128
+ img, rgb_img_float, input_tensor = get_image_from_url(img_url, device)
129
+
130
+ # Specify the target layer for DeepFeatureFactorization (e.g., YOLO's backbone)
131
+ target_layer = model.model.model.model[-lyr_idx] # Select a feature extraction layer
132
+
133
+ dff = DeepFeatureFactorization(model=model.model, target_layer=target_layer)
134
+
135
+ # Run DFF on the input tensor
136
+ concepts, batch_explanations = dff(input_tensor, n_components)
137
+
138
+ # Softmax normalization
139
+ concept_outputs = torch.softmax(torch.from_numpy(concepts), axis=-1).numpy()
140
+ concept_label_strings = create_labels(concept_outputs, top_k=top_k)
141
+
142
+ # Visualize explanations
143
+ visualization = show_factorization_on_image(rgb_img_float,
144
+ batch_explanations[0],
145
+ image_weight=0.2,
146
+ concept_labels=concept_label_strings)
147
+
148
+ import matplotlib.pyplot as plt
149
+ plt.imshow(visualization)
150
+ plt.savefig("test" + str(lyr_idx) + ".png")
151
+ result = np.hstack((img, visualization))
152
+
153
+
154
+ # Resize for visualization
155
+ if result.shape[0] > 500:
156
+ result = cv2.resize(result, (result.shape[1]//4, result.shape[0]//4))
157
+
158
+ return result
159
+
160
+ # Test with images
161
+ for indx in range(2,12):
162
+ Image.fromarray(visualize_image(model,
163
+ "https://github.com/jacobgil/pytorch-grad-cam/blob/master/examples/both.png?raw=true", lyr_idx = indx))