import netron import threading import gradio as gr import os from PIL import Image import cv2 import numpy as np from yolov5 import xai_yolov5 from yolov8 import xai_yolov8s # Sample images directory sample_images = { "Sample 1": os.path.join(os.getcwd(), "data/xai/sample1.jpeg"), "Sample 2": os.path.join(os.getcwd(), "data/xai/sample2.jpg"), } def load_sample_image(sample_name): """Load a sample image based on user selection.""" image_path = sample_images.get(sample_name) if image_path and os.path.exists(image_path): return Image.open(image_path) return None def process_image(sample_choice, uploaded_image, yolo_versions, target_lyr = -5, n_components = 8): """Process the image using selected YOLO models.""" # Load sample or uploaded image if uploaded_image is not None: image = uploaded_image else: image = load_sample_image(sample_choice) # Preprocess image image = np.array(image) image = cv2.resize(image, (640, 640)) result_images = [] # Apply selected models for yolo_version in yolo_versions: if yolo_version == "yolov5": result_images.append(xai_yolov5(image, target_lyr = -5, n_components = 8)) elif yolo_version == "yolov8s": result_images.append(xai_yolov8s(image)) else: result_images.append((Image.fromarray(image), f"{yolo_version} not implemented.")) return result_images def view_model(selected_models): """Generate Netron visualization for the selected models.""" netron_html = "" for model in selected_models: if model == "yolov5": netron_html = f""" """ return netron_html if netron_html else "

No valid models selected for visualization.

" custom_css = """ #custom-row { margin: 0 !important; padding: 0 !important; height: fit-content !important; display: flex !important; justify-content: center !important; } #highlighted-text { color: blue !important; font-size: 32px !important; font-weight: bold !important; } """ # Then in the Gradio interface: with gr.Blocks(css=custom_css) as interface: gr.Markdown(""" ## NeuralVista

Welcome to NeuralVista, a powerful tool designed to help you visualize object detection models in action. With the integration of state-of-the-art YOLO models, you can explore the performance of object detection algorithms on various images.

Whether you're looking to analyze pre-existing samples or upload your own images, NeuralVista allows you to experiment with different YOLO versions, providing you with valuable insights into how these models interpret and detect objects. Additionally, you can view deep feature factorization outputs and gain a deeper understanding of model behavior at different layers, all within an intuitive interface.

""") # Default sample default_sample = "Sample 1" with gr.Row(): # Left side: Sample selection and image upload with gr.Column(): sample_selection = gr.Radio( choices=list(sample_images.keys()), label="Select a Sample Image", value=default_sample, ) upload_image = gr.Image( label="Upload an Image", type="pil", ) selected_models = gr.CheckboxGroup( choices=["yolov5", "yolov8s"], value=["yolov5"], label="Select Model(s)", ) run_button = gr.Button("Run", elem_id="run_button") with gr.Column(): sample_display = gr.Image( value=load_sample_image(default_sample), label="Selected Sample Image", ) # Results and visualization with gr.Row(elem_classes="custom-row"): result_gallery = gr.Gallery( label="Results", rows=1, height="auto", # Adjust height automatically based on content columns=1 , object_fit="contain" ) netron_display = gr.HTML(label="Netron Visualization") # Update sample image sample_selection.change( fn=load_sample_image, inputs=sample_selection, outputs=sample_display, ) with gr.Row(elem_classes="custom-row"): dff_gallery = gr.Gallery( label="Deep Feature Factorization", rows=2, # 8 rows columns=4, # 1 image per row object_fit="fit", height="auto" # Adjust as needed ) # Multi-threaded processing def run_both(sample_choice, uploaded_image, selected_models): results = [] netron_html = "" # Thread to process the image def process_thread(): nonlocal results target_lyr = -5 n_components = 8 results = process_image(sample_choice, uploaded_image, selected_models, target_lyr = -5, n_components = 8) # Thread to generate Netron visualization def netron_thread(): nonlocal netron_html netron_html = view_model(selected_models) # Launch threads t1 = threading.Thread(target=process_thread) t2 = threading.Thread(target=netron_thread) t1.start() t2.start() t1.join() t2.join() image1, text, image2 = results[0] if isinstance(image2, list): # Check if image2 contains exactly 8 images if len(image2) == 8: print("image2 contains 8 images.") else: print("Warning: image2 does not contain exactly 8 images.") else: print("Error: image2 is not a list of images.") return [(image1, text)], netron_html, image2 # Run button click run_button.click( fn=run_both, inputs=[sample_selection, upload_image, selected_models], outputs=[result_gallery, netron_display, dff_gallery], ) # Launch Gradio interface if __name__ == "__main__": interface.launch(share=True)