File size: 6,082 Bytes
068768a
4ad0f35
 
 
068768a
4ad0f35
 
60a1dd5
1a8295f
05d7eef
136c22a
 
1a8295f
068768a
 
c158d20
4ad0f35
 
 
 
 
22adb81
3c9c1e5
7b34278
6aa2e1b
cfdbd9d
60a1dd5
2a9c5fd
780c808
33b82a2
cd484c1
ec1293e
0d01a95
6345a78
fce420f
05d7eef
f851efc
2f983f6
0a9e414
be87659
 
068768a
 
 
4ad0f35
068768a
 
380123c
4ad0f35
380123c
068768a
 
4ad0f35
380123c
4ad0f35
380123c
4ad0f35
 
380123c
4ad0f35
380123c
068768a
 
380123c
4ad0f35
380123c
d308050
068768a
4ad0f35
068768a
 
 
4ad0f35
 
068768a
136c22a
068768a
 
 
136c22a
4ad0f35
 
 
 
068768a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
import streamlit as st
import numpy as np
import pandas as pd
import os
import torch
import torch.nn as nn
from transformers.activations import get_activation
from transformers import AutoTokenizer, AutoModelWithLMHead, AutoModelForCausalLM

st.title('GPT2: To see all prompt outlines: https://huggingface.co/BigSalmon/InformalToFormalLincoln46')
#device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
number_of_outputs = st.sidebar.slider("Number of Outputs", 50, 350)

@st.cache(allow_output_mutation=True)
def get_model():
    #model = #AutoModelWithLMHead.from_pretrained("BigSalmon/GPTNeo350MInformalToFormalLincoln6")
    #model = AutoModelWithLMHead.from_pretrained("BigSalmon/GPTNeo350MInformalToFormalLincoln5")
    #model = AutoModelWithLMHead.from_pretrained("BigSalmon/GPTNeo350MInformalToFormalLincoln4")
    #model = AutoModelWithLMHead.from_pretrained("BigSalmon/GPTNeo350MInformalToFormalLincoln3")
    #model = AutoModelWithLMHead.from_pretrained("BigSalmon/GPTNeo350MInformalToFormalLincoln2")
    #model = AutoModelWithLMHead.from_pretrained("BigSalmon/GPTNeo350MInformalToFormalLincoln")
    #model = AutoModelWithLMHead.from_pretrained("BigSalmon/InformalToFormalLincoln24")
    #model = AutoModelWithLMHead.from_pretrained("BigSalmon/InformalToFormalLincoln25")
    #model = AutoModelWithLMHead.from_pretrained("BigSalmon/InformalToFormalLincoln26")
    #model = AutoModelWithLMHead.from_pretrained("BigSalmon/InformalToFormalLincoln27")
    #model = AutoModelWithLMHead.from_pretrained("BigSalmon/InformalToFormalLincoln28")
    #model = AutoModelWithLMHead.from_pretrained("BigSalmon/InformalToFormalLincoln29")
    #model = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincoln30")
    #model = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincoln31")
    #model = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincoln32")
    #model = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincoln33")
    #model = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincoln34")
    #model = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincoln35")
    #model = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincoln39")
    #model = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincoln40")
    #model = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincoln44")
    #model = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincoln46")
    #model = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincoln52")
    #model = AutoModelForCausalLM.from_pretrained("BigSalmon/Points4")
    tokenizer = AutoTokenizer.from_pretrained("BigSalmon/InformalToFormalLincoln56")
    model = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincoln56")
    return model, tokenizer
    
model, tokenizer = get_model()
g = """informal english: garage band has made people who know nothing about music good at creating music.
Translated into the Style of Abraham Lincoln: garage band ( offers the uninitiated in music the ability to produce professional-quality compositions / catapults those for whom music is an uncharted art the ability the realize masterpieces / stimulates music novice's competency to yield sublime arrangements / begets individuals of rudimentary musical talent the proficiency to fashion elaborate suites ).
informal english: chrome extensions can make doing regular tasks much easier to get done.

***

Translated into the Style of Abraham Lincoln: chrome extensions ( yield the boon of time-saving convenience / ( expedite the ability to / unlock the means to more readily ) accomplish everyday tasks / turbocharges the velocity with which one can conduct their obligations ).
informal english: broadband is finally expanding to rural areas, a great development that will thrust them into modern life.
Translated into the Style of Abraham Lincoln: broadband is ( ( finally / at last / after years of delay ) arriving in remote locations / springing to life in far-flung outposts / inching into even the most backwater corners of the nation ) that will leap-frog them into the twenty-first century.

***

informal english: google translate has made talking to people who do not share your language easier.
Translated into the Style of Abraham Lincoln: google translate ( imparts communicability to individuals whose native tongue differs / mitigates the trials of communication across linguistic barriers / hastens the bridging of semantic boundaries / mollifies the complexity of multilingual communication / avails itself to the internationalization of discussion / flexes its muscles to abet intercultural conversation / calms the tides of linguistic divergence ).

***

informal english: corn fields are all across illinois, visible once you leave chicago.
Translated into the Style of Abraham Lincoln: corn fields ( permeate illinois / span the state of illinois / ( occupy / persist in ) all corners of illinois / line the horizon of illinois / envelop the landscape of illinois ), manifesting themselves visibly as one ventures beyond chicago.

***

informal english: """
with st.form(key='my_form'):
    prompt = st.text_area(label='Enter sentence', value=g)
    submit_button = st.form_submit_button(label='Submit')
    if submit_button:
      with torch.no_grad():
        text = tokenizer.encode(prompt)
        myinput, past_key_values = torch.tensor([text]), None
        myinput = myinput
        #myinput= myinput
        logits, past_key_values = model(myinput, past_key_values = past_key_values, return_dict=False)
        logits = logits[0,-1]
        probabilities = torch.nn.functional.softmax(logits)
        best_logits, best_indices = logits.topk(number_of_outputs)
        best_words = [tokenizer.decode([idx.item()]) for idx in best_indices]
        text.append(best_indices[0].item())
        best_probabilities = probabilities[best_indices].tolist()
        words = []              
        st.write(best_words)