File size: 15,573 Bytes
068768a
f0bf491
 
 
068768a
f0bf491
 
 
2c25e3b
f0bf491
 
 
 
1a8295f
068768a
 
f0bf491
e10fa80
 
 
 
 
 
 
d10165f
 
 
cb31f1a
 
 
f6e7ca2
 
 
00a443e
 
 
f0bf491
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12b2310
f0bf491
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2c25e3b
f0bf491
 
 
 
 
 
 
 
 
 
 
 
068768a
f0bf491
 
 
 
 
 
2c25e3b
f0bf491
 
2c25e3b
f0bf491
 
2c25e3b
f0bf491
 
 
 
 
 
 
 
 
 
 
 
bc4a0ee
f0bf491
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2c25e3b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f0bf491
 
2c25e3b
f0bf491
 
2c25e3b
f0bf491
2c25e3b
 
f0bf491
2c25e3b
f0bf491
2c25e3b
 
f0bf491
 
2c25e3b
f0bf491
 
2c25e3b
 
f0bf491
 
2c25e3b
 
f0bf491
2c25e3b
f0bf491
068768a
f0bf491
068768a
f0bf491
 
 
 
068768a
 
f0bf491
 
068768a
f0bf491
068768a
 
 
f0bf491
 
 
 
 
2c25e3b
f0bf491
 
 
 
 
 
 
2c25e3b
f0bf491
 
 
2c25e3b
f0bf491
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
import streamlit as st
import numpy as np
import pandas as pd
import os
import torch
import torch.nn as nn
from transformers.activations import get_activation
from transformers import AutoTokenizer, AutoModelForCausalLM


st.title('GPT2: To see all prompt outlines: https://huggingface.co/BigSalmon/InformalToFormalLincoln64Paraphrase')

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

@st.cache(allow_output_mutation=True)
def get_model():

    #BigSalmon/InstructGPT2Large

    tokenizer = AutoTokenizer.from_pretrained("BigSalmon/InstructGPT2Large")
    model = AutoModelForCausalLM.from_pretrained("BigSalmon/InstructGPT2Large")

    #tokenizer = AutoTokenizer.from_pretrained("BigSalmon/TruncatedLLamaGPT2Large")
    #model = AutoModelForCausalLM.from_pretrained("BigSalmon/TruncatedLLamaGPT2Large")
    
    #tokenizer = AutoTokenizer.from_pretrained("BigSalmon/InformalToFormalLincoln95Paraphrase")
    #model = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincoln95Paraphrase")
    
    #tokenizer = AutoTokenizer.from_pretrained("BigSalmon/InformalToFormalLincoln93Paraphrase")
    #model = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincoln93Paraphrase")

    #tokenizer = AutoTokenizer.from_pretrained("BigSalmon/InformalToFormalLincoln91Paraphrase")
    #model = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincoln91Paraphrase")

    #tokenizer = AutoTokenizer.from_pretrained("BigSalmon/InformalToFormalLincoln90Paraphrase")
    #model = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincoln90Paraphrase")

    #tokenizer = AutoTokenizer.from_pretrained("BigSalmon/InformalToFormalLincoln88Paraphrase")
    #model = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincoln88Paraphrase")

    #tokenizer = AutoTokenizer.from_pretrained("BigSalmon/InformalToFormalLincoln86Paraphrase")
    #model = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincoln86Paraphrase")
    
    #tokenizer = AutoTokenizer.from_pretrained("BigSalmon/InformalToFormalLincoln82Paraphrase")
    #model = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincoln82Paraphrase")

    #tokenizer = AutoTokenizer.from_pretrained("BigSalmon/InformalToFormalLincoln79Paraphrase")
    #model = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincoln79Paraphrase")
    
    #tokenizer = AutoTokenizer.from_pretrained("BigSalmon/InformalToFormalLincoln74Paraphrase")
    #model = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincoln74Paraphrase")

    #tokenizer = AutoTokenizer.from_pretrained("BigSalmon/InformalToFormalLincoln72Paraphrase")
    #model = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincoln72Paraphrase")

    #tokenizer = AutoTokenizer.from_pretrained("BigSalmon/InformalToFormalLincoln64Paraphrase")
    #model = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincoln64Paraphrase")

    #tokenizer = AutoTokenizer.from_pretrained("BigSalmon/InformalToFormalLincoln60Paraphrase")
    #model = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincoln60Paraphrase")

    #tokenizer = AutoTokenizer.from_pretrained("BigSalmon/GPTNeo1.3BInformalToFormal")
    #model = AutoModelForCausalLM.from_pretrained("BigSalmon/GPTNeo1.3BInformalToFormal")

    #tokenizer = AutoTokenizer.from_pretrained("BigSalmon/InformalToFormalLincoln55")
    #model = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincoln55")

    #tokenizer = AutoTokenizer.from_pretrained("BigSalmon/InformalToFormalLincoln51")
    #model = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincoln51")

    #tokenizer = AutoTokenizer.from_pretrained("BigSalmon/InformalToFormalLincoln45")
    #model = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincoln49")
    
    #tokenizer = AutoTokenizer.from_pretrained("BigSalmon/InformalToFormalLincoln43")
    #model = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincoln43")

    #tokenizer = AutoTokenizer.from_pretrained("BigSalmon/InformalToFormalLincoln41")
    #model = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincoln41")

    #tokenizer = AutoTokenizer.from_pretrained("BigSalmon/InformalToFormalLincoln38")
    #model = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincoln38")

    #tokenizer = AutoTokenizer.from_pretrained("BigSalmon/InformalToFormalLincoln37")
    #model = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincoln37")

    #tokenizer = AutoTokenizer.from_pretrained("BigSalmon/InformalToFormalLincoln36")
    #model = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincoln36")

    #tokenizer = AutoTokenizer.from_pretrained("BigSalmon/MediumInformalToFormalLincoln")
    #model = AutoModelForCausalLM.from_pretrained("BigSalmon/MediumInformalToFormalLincoln")

    #tokenizer = AutoTokenizer.from_pretrained("BigSalmon/InformalToFormalLincoln35")
    #model = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincoln35")

    #tokenizer = AutoTokenizer.from_pretrained("BigSalmon/InformalToFormalLincoln31")
    #model = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincoln31")
    
    #tokenizer = AutoTokenizer.from_pretrained("BigSalmon/InformalToFormalLincoln21")
    #model = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincoln21")
    
    #tokenizer = AutoTokenizer.from_pretrained("BigSalmon/PointsOneSent")
    #model = AutoModelForCausalLM.from_pretrained("BigSalmon/PointsOneSent")
    
    #tokenizer = AutoTokenizer.from_pretrained("BigSalmon/PointsToSentence")
    #model = AutoModelForCausalLM.from_pretrained("BigSalmon/PointsToSentence")
    
    return model, tokenizer
    
model, tokenizer = get_model()

g = """informal english: garage band has made people who know nothing about music good at creating music.
Translated into the Style of Abraham Lincoln: garage band ( offers the uninitiated in music the ability to produce professional-quality compositions / catapults those for whom music is an uncharted art the ability the realize masterpieces / stimulates music novice's competency to yield sublime arrangements / begets individuals of rudimentary musical talent the proficiency to fashion elaborate suites ).

informal english: chrome extensions can make doing regular tasks much easier to get done.
Translated into the Style of Abraham Lincoln: chrome extensions ( yield the boon of time-saving convenience / ( expedite the ability to / unlock the means to more readily ) accomplish everyday tasks / turbocharges the velocity with which one can conduct their obligations ).

informal english: broadband is finally expanding to rural areas, a great development that will thrust them into modern life.
Translated into the Style of Abraham Lincoln: broadband is ( ( finally / at last / after years of delay ) arriving in remote locations / springing to life in far-flung outposts / inching into even the most backwater corners of the nation ) that will leap-frog them into the twenty-first century.

informal english: google translate has made talking to people who do not share your language easier.
Translated into the Style of Abraham Lincoln: google translate ( imparts communicability to individuals whose native tongue differs / mitigates the trials of communication across linguistic barriers / hastens the bridging of semantic boundaries / mollifies the complexity of multilingual communication / avails itself to the internationalization of discussion / flexes its muscles to abet intercultural conversation / calms the tides of linguistic divergence ).

informal english: corn fields are all across illinois, visible once you leave chicago.
Translated into the Style of Abraham Lincoln: corn fields ( permeate illinois / span the state of illinois / ( occupy / persist in ) all corners of illinois / line the horizon of illinois / envelop the landscape of illinois ), manifesting themselves visibly as one ventures beyond chicago.

informal english: """

number_of_outputs = st.sidebar.slider("Number of Outputs", 5, 100)
log_nums = st.sidebar.slider("How Many Log Outputs?", 50, 1000)

def BestProbs(prompt):
  prompt = prompt.strip()
  text = tokenizer.encode(prompt)
  myinput, past_key_values = torch.tensor([text]), None
  myinput = myinput
  logits, past_key_values = model(myinput, past_key_values = past_key_values, return_dict=False)
  logits = logits[0,-1]
  probabilities = torch.nn.functional.softmax(logits)
  best_logits, best_indices = logits.topk(10)
  best_words = [tokenizer.decode([idx.item()]) for idx in best_indices]
  for i in best_words[0:10]:
    print("_______")
    st.write(f"${i} $\n")
    f = (f"${i} $\n")
    m = (prompt + f"{i}")
    BestProbs2(m)
  return f

def BestProbs2(prompt):
  prompt = prompt.strip()
  text = tokenizer.encode(prompt)
  myinput, past_key_values = torch.tensor([text]), None
  myinput = myinput
  logits, past_key_values = model(myinput, past_key_values = past_key_values, return_dict=False)
  logits = logits[0,-1]
  probabilities = torch.nn.functional.softmax(logits)
  best_logits, best_indices = logits.topk(20)
  best_words = [tokenizer.decode([idx.item()]) for idx in best_indices]
  for i in best_words[0:20]:
    print(i)
    st.write(i)
    
def LogProbs(prompt):
  col1 = []
  col2 = []
  prompt = prompt.strip()
  text = tokenizer.encode(prompt)
  myinput, past_key_values = torch.tensor([text]), None
  myinput = myinput
  logits, past_key_values = model(myinput, past_key_values = past_key_values, return_dict=False)
  logits = logits[0,-1]
  probabilities = torch.nn.functional.softmax(logits)
  best_logits, best_indices = logits.topk(10)
  best_words = [tokenizer.decode([idx.item()]) for idx in best_indices]
  for i in best_words[0:10]:
    print("_______")
    f = i
    col1.append(f)
    m = (prompt + f"{i}")
    #print("^^" + f + " ^^")
    prompt = m.strip()
    text = tokenizer.encode(prompt)
    myinput, past_key_values = torch.tensor([text]), None
    myinput = myinput
    logits, past_key_values = model(myinput, past_key_values = past_key_values, return_dict=False)
    logits = logits[0,-1]
    probabilities = torch.nn.functional.softmax(logits)
    best_logits, best_indices = logits.topk(20)
    best_words = [tokenizer.decode([idx.item()]) for idx in best_indices]
    for i in best_words[0:20]:
      #print(i)
      col2.append(i)
  #print(col1)
  #print(col2)
  d = {col1[0]: [col2[0], col2[1], col2[2], col2[3], col2[4], col2[5], col2[6], col2[7], col2[8], col2[9], col2[10], col2[11], col2[12], col2[13], col2[14], col2[15], col2[16], col2[17], col2[18], col2[19]],
    col1[1]: [col2[20], col2[21], col2[22], col2[23], col2[24], col2[25], col2[26], col2[27], col2[28], col2[29], col2[30], col2[31], col2[32], col2[33], col2[34], col2[35], col2[36], col2[37], col2[38], col2[39]],
    col1[2]: [col2[40], col2[41], col2[42], col2[43], col2[44], col2[45], col2[46], col2[47], col2[48], col2[49], col2[50], col2[51], col2[52], col2[53], col2[54], col2[55], col2[56], col2[57], col2[58], col2[59]],
    col1[3]: [col2[60], col2[61], col2[62], col2[63], col2[64], col2[65], col2[66], col2[67], col2[68], col2[69], col2[70], col2[71], col2[72], col2[73], col2[74], col2[75], col2[76], col2[77], col2[78], col2[79]],
    col1[4]: [col2[80], col2[81], col2[82], col2[83], col2[84], col2[85], col2[86], col2[87], col2[88], col2[89], col2[90], col2[91], col2[92], col2[93], col2[94], col2[95], col2[96], col2[97], col2[98], col2[99]],
    col1[5]: [col2[100], col2[101], col2[102], col2[103], col2[104], col2[105], col2[106], col2[107], col2[108], col2[109], col2[110], col2[111], col2[112], col2[113], col2[114], col2[115], col2[116], col2[117], col2[118], col2[119]],
    col1[6]: [col2[120], col2[121], col2[122], col2[123], col2[124], col2[125], col2[126], col2[127], col2[128], col2[129], col2[130], col2[131], col2[132], col2[133], col2[134], col2[135], col2[136], col2[137], col2[138], col2[139]],
    col1[7]: [col2[140], col2[141], col2[142], col2[143], col2[144], col2[145], col2[146], col2[147], col2[148], col2[149], col2[150], col2[151], col2[152], col2[153], col2[154], col2[155], col2[156], col2[157], col2[158], col2[159]],
    col1[8]: [col2[160], col2[161], col2[162], col2[163], col2[164], col2[165], col2[166], col2[167], col2[168], col2[169], col2[170], col2[171], col2[172], col2[173], col2[174], col2[175], col2[176], col2[177], col2[178], col2[179]],
    col1[9]: [col2[180], col2[181], col2[182], col2[183], col2[184], col2[185], col2[186], col2[187], col2[188], col2[189], col2[190], col2[191], col2[192], col2[193], col2[194], col2[195], col2[196], col2[197], col2[198], col2[199]]}
  df = pd.DataFrame(data=d)
  print(df)
  st.write(df)
  return df
  
def BestProbs5(prompt):
  prompt = prompt.strip()
  text = tokenizer.encode(prompt)
  myinput, past_key_values = torch.tensor([text]), None
  myinput = myinput
  logits, past_key_values = model(myinput, past_key_values = past_key_values, return_dict=False)
  logits = logits[0,-1]
  probabilities = torch.nn.functional.softmax(logits)
  best_logits, best_indices = logits.topk(number_of_outputs)
  best_words = [tokenizer.decode([idx.item()]) for idx in best_indices]
  for i in best_words[0:number_of_outputs]:
    #print(i)
    print("\n")
    g = (prompt + i)
    st.write(g)
    l = run_generate(g, "hey")
    st.write(l)
    
def run_generate(text, bad_words):
  yo = []
  input_ids = tokenizer.encode(text, return_tensors='pt')
  res = len(tokenizer.encode(text))
  bad_words = bad_words.split()
  bad_word_ids = [[7829], [40940]]
  for bad_word in bad_words: 
    bad_word = " " + bad_word
    ids = tokenizer(bad_word).input_ids
    bad_word_ids.append(ids)
  sample_outputs = model.generate(
    input_ids,
    do_sample=True, 
    max_length= res + 5, 
    min_length = res + 5, 
    top_k=50,
    temperature=1.0,
    num_return_sequences=3,
    bad_words_ids=bad_word_ids
  )
  for i in range(3):
    e = tokenizer.decode(sample_outputs[i])
    e = e.replace(text, "")
    yo.append(e)
  print(yo)
  return yo

with st.form(key='my_form'):
    prompt = st.text_area(label='Enter sentence', value=g, height=500)
    submit_button = st.form_submit_button(label='Submit')
    submit_button2 = st.form_submit_button(label='Fast Forward')
    submit_button3 = st.form_submit_button(label='Fast Forward 2.0')
    submit_button4 = st.form_submit_button(label='Get Top')

    if submit_button:
      with torch.no_grad():
        text = tokenizer.encode(prompt)
        myinput, past_key_values = torch.tensor([text]), None
        myinput = myinput
        myinput= myinput.to(device)
        logits, past_key_values = model(myinput, past_key_values = past_key_values, return_dict=False)
        logits = logits[0,-1]
        probabilities = torch.nn.functional.softmax(logits)
        best_logits, best_indices = logits.topk(log_nums)
        best_words = [tokenizer.decode([idx.item()]) for idx in best_indices]
        text.append(best_indices[0].item())
        best_probabilities = probabilities[best_indices].tolist()
        words = []              
        st.write(best_words)
    if submit_button2:
        print("----")
        st.write("___")
        m = LogProbs(prompt)
        st.write("___")
        st.write(m)
        st.write("___")
    if submit_button3:
        print("----")
        st.write("___")
        st.write(BestProbs)
    if submit_button4:
      BestProbs5(prompt)