BilalSardar
commited on
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,165 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from turtle import title
|
2 |
+
import gradio as gr
|
3 |
+
|
4 |
+
import git
|
5 |
+
import os
|
6 |
+
os.system('git clone https://github.com/Edresson/Coqui-TTS -b multilingual-torchaudio-SE TTS')
|
7 |
+
os.system('pip install -q -e TTS/')
|
8 |
+
os.system('pip install -q torchaudio==0.9.0')
|
9 |
+
|
10 |
+
import sys
|
11 |
+
TTS_PATH = "TTS/"
|
12 |
+
|
13 |
+
# add libraries into environment
|
14 |
+
sys.path.append(TTS_PATH) # set this if TTS is not installed globally
|
15 |
+
|
16 |
+
import os
|
17 |
+
import string
|
18 |
+
import time
|
19 |
+
import argparse
|
20 |
+
import json
|
21 |
+
|
22 |
+
import numpy as np
|
23 |
+
import IPython
|
24 |
+
from IPython.display import Audio
|
25 |
+
|
26 |
+
|
27 |
+
import torch
|
28 |
+
|
29 |
+
from TTS.tts.utils.synthesis import synthesis
|
30 |
+
#from TTS.tts.utils.text.symbols import make_symbols, phonemes, symbols
|
31 |
+
try:
|
32 |
+
from TTS.utils.audio import AudioProcessor
|
33 |
+
except:
|
34 |
+
from TTS.utils.audio import AudioProcessor
|
35 |
+
|
36 |
+
|
37 |
+
from TTS.tts.models import setup_model
|
38 |
+
from TTS.config import load_config
|
39 |
+
from TTS.tts.models.vits import *
|
40 |
+
|
41 |
+
OUT_PATH = 'out/'
|
42 |
+
|
43 |
+
# create output path
|
44 |
+
os.makedirs(OUT_PATH, exist_ok=True)
|
45 |
+
|
46 |
+
# model vars
|
47 |
+
MODEL_PATH = '/home/user/app/best_model_latest.pth.tar'
|
48 |
+
CONFIG_PATH = '/home/user/app/config.json'
|
49 |
+
TTS_LANGUAGES = "/home/user/app/language_ids.json"
|
50 |
+
TTS_SPEAKERS = "/home/user/app/speakers.json"
|
51 |
+
USE_CUDA = torch.cuda.is_available()
|
52 |
+
|
53 |
+
# load the config
|
54 |
+
C = load_config(CONFIG_PATH)
|
55 |
+
|
56 |
+
|
57 |
+
# load the audio processor
|
58 |
+
ap = AudioProcessor(**C.audio)
|
59 |
+
|
60 |
+
speaker_embedding = None
|
61 |
+
|
62 |
+
C.model_args['d_vector_file'] = TTS_SPEAKERS
|
63 |
+
C.model_args['use_speaker_encoder_as_loss'] = False
|
64 |
+
|
65 |
+
model = setup_model(C)
|
66 |
+
model.language_manager.set_language_ids_from_file(TTS_LANGUAGES)
|
67 |
+
# print(model.language_manager.num_languages, model.embedded_language_dim)
|
68 |
+
# print(model.emb_l)
|
69 |
+
cp = torch.load(MODEL_PATH, map_location=torch.device('cpu'))
|
70 |
+
# remove speaker encoder
|
71 |
+
model_weights = cp['model'].copy()
|
72 |
+
for key in list(model_weights.keys()):
|
73 |
+
if "speaker_encoder" in key:
|
74 |
+
del model_weights[key]
|
75 |
+
|
76 |
+
model.load_state_dict(model_weights)
|
77 |
+
|
78 |
+
|
79 |
+
model.eval()
|
80 |
+
|
81 |
+
if USE_CUDA:
|
82 |
+
model = model.cuda()
|
83 |
+
|
84 |
+
# synthesize voice
|
85 |
+
use_griffin_lim = False
|
86 |
+
|
87 |
+
os.system('pip install -q pydub ffmpeg-normalize')
|
88 |
+
|
89 |
+
CONFIG_SE_PATH = "config_se.json"
|
90 |
+
CHECKPOINT_SE_PATH = "SE_checkpoint.pth.tar"
|
91 |
+
|
92 |
+
from TTS.tts.utils.speakers import SpeakerManager
|
93 |
+
from pydub import AudioSegment
|
94 |
+
import librosa
|
95 |
+
|
96 |
+
SE_speaker_manager = SpeakerManager(encoder_model_path=CHECKPOINT_SE_PATH, encoder_config_path=CONFIG_SE_PATH, use_cuda=USE_CUDA)
|
97 |
+
|
98 |
+
def compute_spec(ref_file):
|
99 |
+
y, sr = librosa.load(ref_file, sr=ap.sample_rate)
|
100 |
+
spec = ap.spectrogram(y)
|
101 |
+
spec = torch.FloatTensor(spec).unsqueeze(0)
|
102 |
+
return spec
|
103 |
+
|
104 |
+
|
105 |
+
|
106 |
+
def greet(Text,Voicetoclone,VoiceMicrophone):
|
107 |
+
text= "%s" % (Text)
|
108 |
+
if Voicetoclone is not None:
|
109 |
+
reference_files= "%s" % (Voicetoclone)
|
110 |
+
print("path url")
|
111 |
+
print(Voicetoclone)
|
112 |
+
sample= str(Voicetoclone)
|
113 |
+
else:
|
114 |
+
reference_files= "%s" % (VoiceMicrophone)
|
115 |
+
print("path url")
|
116 |
+
print(VoiceMicrophone)
|
117 |
+
sample= str(VoiceMicrophone)
|
118 |
+
size= len(reference_files)*sys.getsizeof(reference_files)
|
119 |
+
size2= size / 1000000
|
120 |
+
if (size2 > 0.012) or len(text)>2000:
|
121 |
+
message="File is greater than 30mb or Text inserted is longer than 2000 characters. Please re-try with smaller sizes."
|
122 |
+
print(message)
|
123 |
+
raise SystemExit("File is greater than 30mb. Please re-try or Text inserted is longer than 2000 characters. Please re-try with smaller sizes.")
|
124 |
+
else:
|
125 |
+
os.system('ffmpeg-normalize $sample -nt rms -t=-27 -o $sample -ar 16000 -f')
|
126 |
+
reference_emb = SE_speaker_manager.compute_d_vector_from_clip(reference_files)
|
127 |
+
model.length_scale = 1 # scaler for the duration predictor. The larger it is, the slower the speech.
|
128 |
+
model.inference_noise_scale = 0.3 # defines the noise variance applied to the random z vector at inference.
|
129 |
+
model.inference_noise_scale_dp = 0.3 # defines the noise variance applied to the duration predictor z vector at inference.
|
130 |
+
text = text
|
131 |
+
model.language_manager.language_id_mapping
|
132 |
+
language_id = 0
|
133 |
+
|
134 |
+
print(" > text: {}".format(text))
|
135 |
+
wav, alignment, _, _ = synthesis(
|
136 |
+
model,
|
137 |
+
text,
|
138 |
+
C,
|
139 |
+
"cuda" in str(next(model.parameters()).device),
|
140 |
+
ap,
|
141 |
+
speaker_id=None,
|
142 |
+
d_vector=reference_emb,
|
143 |
+
style_wav=None,
|
144 |
+
language_id=language_id,
|
145 |
+
enable_eos_bos_chars=C.enable_eos_bos_chars,
|
146 |
+
use_griffin_lim=True,
|
147 |
+
do_trim_silence=False,
|
148 |
+
).values()
|
149 |
+
print("Generated Audio")
|
150 |
+
IPython.display.display(Audio(wav, rate=ap.sample_rate))
|
151 |
+
#file_name = text.replace(" ", "_")
|
152 |
+
#file_name = file_name.translate(str.maketrans('', '', string.punctuation.replace('_', ''))) + '.wav'
|
153 |
+
file_name="Audio.wav"
|
154 |
+
out_path = os.path.join(OUT_PATH, file_name)
|
155 |
+
print(" > Saving output to {}".format(out_path))
|
156 |
+
ap.save_wav(wav, out_path)
|
157 |
+
return out_path
|
158 |
+
|
159 |
+
demo = gr.Interface(
|
160 |
+
fn=greet,
|
161 |
+
inputs=[gr.inputs.Textbox(label='What would you like the voice to say? (max. 2000 characters per request)'),gr.Audio(type="filepath", source="upload",label='Please upload a voice to clone (max. 30mb)'),gr.Audio(source="microphone", type="filepath", streaming=True)],
|
162 |
+
outputs="audio",
|
163 |
+
title="Bilal's Voice Cloning Tool"
|
164 |
+
)
|
165 |
+
demo.launch()
|