Spaces:
Runtime error
Runtime error
import torch | |
import gradio as gr | |
from threading import Thread | |
from peft import PeftModel, PeftConfig | |
from unsloth import FastLanguageModel | |
from transformers import TextStreamer | |
from transformers import AutoModelForCausalLM, AutoTokenizer, StoppingCriteria, StoppingCriteriaList, TextIteratorStreamer | |
config = PeftConfig.from_pretrained("bilgee/Llama-3.1-8B-MN_Instruct") | |
model = AutoModelForCausalLM.from_pretrained("unsloth/llama-3-8b", torch_dtype = torch.float16) | |
model = PeftModel.from_pretrained(model, "bilgee/Llama-3.1-8B-MN_Instruct") | |
#load tokenizer | |
tokenizer = AutoTokenizer.from_pretrained("bilgee/Llama-3.1-8B-MN_Instruct") | |
alpaca_prompt = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request. | |
### Instruction: | |
{} | |
### Input: | |
{} | |
### Response: | |
{}""" | |
# Enable native 2x faster inference | |
FastLanguageModel.for_inference(model) | |
# Create a text streamer | |
text_streamer = TextStreamer(tokenizer, skip_prompt=False,skip_special_tokens=True) | |
# Get the device based on GPU availability | |
device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
# Move model into device | |
model = model.to(device) | |
class StopOnTokens(StoppingCriteria): | |
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool: | |
stop_ids = [29, 0] | |
for stop_id in stop_ids: | |
if input_ids[0][-1] == stop_id: | |
return True | |
return False | |
# Current implementation does not support conversation based on previous conversation. | |
# Highly recommend to experiment on various hyper parameters to compare qualities. | |
def predict(message, history): | |
stop = StopOnTokens() | |
messages = alpaca_prompt.format( | |
message, | |
"", | |
"", | |
) | |
model_inputs = tokenizer([messages], return_tensors="pt").to(device) | |
streamer = TextIteratorStreamer(tokenizer, timeout=10., skip_prompt=True, skip_special_tokens=True) | |
generate_kwargs = dict( | |
model_inputs, | |
streamer=streamer, | |
max_new_tokens=1024, | |
top_p=0.95, | |
temperature=0.001, | |
repetition_penalty=1.1, | |
stopping_criteria=StoppingCriteriaList([stop]) | |
) | |
t = Thread(target=model.generate, kwargs=generate_kwargs) | |
t.start() | |
partial_message = "" | |
for new_token in streamer: | |
if new_token != '<': | |
partial_message += new_token | |
yield partial_message | |
gr.ChatInterface(predict).launch(debug=True, share=True, show_api=True) | |