Spaces:
Runtime error
Runtime error
BillBojangeles2000
commited on
Commit
•
abb2086
1
Parent(s):
147a264
Update app.py
Browse files
app.py
CHANGED
@@ -2,67 +2,70 @@ import pinecone
|
|
2 |
import streamlit as st
|
3 |
|
4 |
API = st.text_area('Enter API key:')
|
5 |
-
|
6 |
-
|
7 |
-
pinecone
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
index_name = "abstractive-question-answering"
|
13 |
-
|
14 |
-
# check if the abstractive-question-answering index exists
|
15 |
-
if index_name not in pinecone.list_indexes():
|
16 |
-
# create the index if it does not exist
|
17 |
-
pinecone.create_index(
|
18 |
-
index_name,
|
19 |
-
dimension=768,
|
20 |
-
metric="cosine"
|
21 |
)
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
query
|
66 |
-
|
67 |
-
|
68 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
import streamlit as st
|
3 |
|
4 |
API = st.text_area('Enter API key:')
|
5 |
+
res = st.button('Submit')
|
6 |
+
if res = True:
|
7 |
+
# connect to pinecone environment
|
8 |
+
pinecone.init(
|
9 |
+
api_key="API",
|
10 |
+
environment="us-central1-gcp" # find next to API key in console
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
)
|
12 |
+
|
13 |
+
index_name = "abstractive-question-answering"
|
14 |
+
|
15 |
+
# check if the abstractive-question-answering index exists
|
16 |
+
if index_name not in pinecone.list_indexes():
|
17 |
+
# create the index if it does not exist
|
18 |
+
pinecone.create_index(
|
19 |
+
index_name,
|
20 |
+
dimension=768,
|
21 |
+
metric="cosine"
|
22 |
+
)
|
23 |
+
|
24 |
+
# connect to abstractive-question-answering index we created
|
25 |
+
index = pinecone.Index(index_name)
|
26 |
+
|
27 |
+
import torch
|
28 |
+
from sentence_transformers import SentenceTransformer
|
29 |
+
|
30 |
+
# set device to GPU if available
|
31 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
32 |
+
# load the retriever model from huggingface model hub
|
33 |
+
retriever = SentenceTransformer("flax-sentence-embeddings/all_datasets_v3_mpnet-base", device=device)
|
34 |
+
|
35 |
+
from transformers import BartTokenizer, BartForConditionalGeneration
|
36 |
+
|
37 |
+
# load bart tokenizer and model from huggingface
|
38 |
+
tokenizer = BartTokenizer.from_pretrained('vblagoje/bart_lfqa')
|
39 |
+
generator = BartForConditionalGeneration.from_pretrained('vblagoje/bart_lfqa').to('cpu')
|
40 |
+
|
41 |
+
def query_pinecone(query, top_k):
|
42 |
+
# generate embeddings for the query
|
43 |
+
xq = retriever.encode([query]).tolist()
|
44 |
+
# search pinecone index for context passage with the answer
|
45 |
+
xc = index.query(xq, top_k=top_k, include_metadata=True)
|
46 |
+
return xc
|
47 |
+
|
48 |
+
def format_query(query, context):
|
49 |
+
# extract passage_text from Pinecone search result and add the <P> tag
|
50 |
+
context = [f"<P> {m['metadata']['text']}" for m in context]
|
51 |
+
# concatinate all context passages
|
52 |
+
context = " ".join(context)
|
53 |
+
# contcatinate the query and context passages
|
54 |
+
query = f"question: {query} context: {context}"
|
55 |
+
return query
|
56 |
+
|
57 |
+
def generate_answer(query):
|
58 |
+
# tokenize the query to get input_ids
|
59 |
+
inputs = tokenizer([query], trunication=True, max_length=1024, return_tensors="pt")
|
60 |
+
# use generator to predict output ids
|
61 |
+
ids = generator.generate(inputs["input_ids"], num_beams=2, min_length=20, max_length=64)
|
62 |
+
# use tokenizer to decode the output ids
|
63 |
+
answer = tokenizer.batch_decode(ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
64 |
+
return pprint(answer)
|
65 |
+
|
66 |
+
query = st.text_area('Enter your question:')
|
67 |
+
s = st.button('Submit')
|
68 |
+
if s = True:
|
69 |
+
context = query_pinecone(query, top_k=5)
|
70 |
+
query = format_query(query, context["matches"])
|
71 |
+
generate_answer(query)
|