BillBojangeles2000's picture
Update app.py
b76eeeb
raw
history blame
2.78 kB
from huggingface_hub import InferenceClient
import gradio as gr
client = InferenceClient(
"HuggingFaceH4/zephyr-7b-alpha"
)
def format_prompt(message, history):
system = "<|system|>When asked a question, answer only the question. Do no elaborate, or add on. Just answer the question in one to two sentences. You sentences should be at the 5th or 6th grade level.</s>\n"
prompt = ""
for user_prompt, bot_response in history:
prompt += f"<|user|>\n{user_prompt}</s>\n"
prompt += f"<|assistant|>\n{bot_response}</s>\n"
prompt += f"<|user|>\n{message}</s>\n"
return prompt
def generate(
prompt, history, temperature=0.9, max_new_tokens=500, top_p=0.95, repetition_penalty=1.0,
):
temperature = float(temperature)
if temperature < 1e-2:
temperature = 1e-2
top_p = float(top_p)
generate_kwargs = dict(
temperature=temperature,
max_new_tokens=max_new_tokens,
top_p=top_p,
repetition_penalty=repetition_penalty,
do_sample=True,
seed=42,
)
formatted_prompt = format_prompt(prompt, history)
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
output = ""
for response in stream:
output += response.token.text
yield output
return output
additional_inputs=[
gr.Slider(
label="Temperature",
value=0.9,
minimum=0.0,
maximum=1.0,
step=0.05,
interactive=True,
info="Higher values produce more diverse outputs",
),
gr.Slider(
label="Max new tokens",
value=256,
minimum=0,
maximum=1048,
step=64,
interactive=True,
info="The maximum numbers of new tokens",
),
gr.Slider(
label="Top-p (nucleus sampling)",
value=0.90,
minimum=0.0,
maximum=1,
step=0.05,
interactive=True,
info="Higher values sample more low-probability tokens",
),
gr.Slider(
label="Repetition penalty",
value=1.2,
minimum=1.0,
maximum=2.0,
step=0.05,
interactive=True,
info="Penalize repeated tokens",
)
]
css = """
#mkd {
height: 500px;
overflow: auto;
border: 1px solid #ccc;
}
"""
with gr.Blocks(css=css) as inf:
gr.HTML("<h1><center>zephyr-7b-alpha<h1><center>")
gr.HTML("<h3><center>In this demo, you can chat with <a href='https://huggingface.co/HuggingFaceH4/zephyr-7b-alpha'>zephyr-7b-alpha</a> model. 💬<h3><center>")
gr.ChatInterface(
generate,
additional_inputs=additional_inputs,
examples=[["Can squirrel swims?"], ["Write a poem about squirrel."]]
)
inf.queue().launch()