Bingsu's picture
style: isort
e336559
raw
history blame
1.25 kB
import pickle
import numpy as np
import pandas as pd
import streamlit as st
from sentence_transformers.util import semantic_search
from transformers import VisionTextDualEncoderModel, VisionTextDualEncoderProcessor
st.title("VitB32 Bert Ko Small Clip Test")
st.markdown("Unsplash data์—์„œ ์ž…๋ ฅ ํ…์ŠคํŠธ์™€ ๊ฐ€์žฅ ์œ ์‚ฌํ•œ ์ด๋ฏธ์ง€๋ฅผ ๊ฒ€์ƒ‰ํ•ฉ๋‹ˆ๋‹ค.")
with st.spinner("Loading model..."):
model = VisionTextDualEncoderModel.from_pretrained(
"Bingsu/vitB32_bert_ko_small_clip"
)
processor = VisionTextDualEncoderProcessor.from_pretrained(
"Bingsu/vitB32_bert_ko_small_clip"
)
info = pd.read_csv("info.csv")
with open("img_id.pkl", "rb") as f:
img_id = pickle.load(f)
img_emb = np.load("img_emb.npy")
text = st.text_input("Input Text", value="๊ฒ€์€ ๊ณ ์–‘์ด")
tokens = processor(text=text, return_tensors="pt")
with st.spinner("Predicting..."):
text_emb = model.get_text_features(**tokens)
result = semantic_search(text_emb, img_emb, top_k=6)[0]
columns = st.columns(3) + st.columns(3)
for i, col in enumerate(columns):
photo_id = img_id[result[i]["corpus_id"]]
img_url = info.loc[info["photo_id"] == photo_id, "photo_image_url"].values[0]
col.image(img_url, use_column_width=True)