Update app.py
Browse files
app.py
CHANGED
@@ -24,37 +24,18 @@ def resampler(input_file_path, output_file_path):
|
|
24 |
subprocess.call(command, shell=True)
|
25 |
|
26 |
|
27 |
-
# def parse_transcription_with_lm(logits):
|
28 |
-
# result = processor_with_LM.batch_decode(logits.cpu().numpy())
|
29 |
-
# text = result.text
|
30 |
-
# transcription = text[0].replace('<s>','')
|
31 |
-
# return transcription
|
32 |
-
|
33 |
def parse_transcription(logits):
|
34 |
predicted_ids = torch.argmax(logits, dim=-1)
|
35 |
transcription = processor.decode(predicted_ids[0], skip_special_tokens=True)
|
36 |
return transcription
|
37 |
|
38 |
-
|
39 |
-
|
40 |
-
# with torch.no_grad():
|
41 |
-
# logits = model(**input_values).logits
|
42 |
-
|
43 |
-
# if applyLM:
|
44 |
-
# # return parse_transcription_with_lm(logits)
|
45 |
-
# return "done"
|
46 |
-
# else:
|
47 |
-
# return parse_transcription(logits)
|
48 |
-
|
49 |
-
def parse(wav_file, applyLM):
|
50 |
input_values = read_file_and_process(wav_file)
|
51 |
with torch.no_grad():
|
52 |
logits = model(**input_values).logits
|
53 |
|
54 |
-
if
|
55 |
-
# return parse_transcription_with_lm(logits)
|
56 |
-
return "done"
|
57 |
-
else:
|
58 |
return parse_transcription(logits)
|
59 |
|
60 |
|
@@ -76,57 +57,19 @@ def parse(wav_file, applyLM):
|
|
76 |
# This is hindi
|
77 |
model_id = "Harveenchadha/vakyansh-wav2vec2-hindi-him-4200"
|
78 |
|
79 |
-
|
80 |
-
|
81 |
-
# processor = Wav2Vec2Processor.from_pretrained(model_id)
|
82 |
-
# # processor_with_LM = Wav2Vec2ProcessorWithLM.from_pretrained(model_id)
|
83 |
-
# model = Wav2Vec2ForCTC.from_pretrained(model_id)
|
84 |
-
|
85 |
-
|
86 |
-
# input_ = gr.Audio(source="microphone", type="filepath")
|
87 |
-
# txtbox = gr.Textbox(
|
88 |
-
# label="Output from model will appear here:",
|
89 |
-
# lines=5
|
90 |
-
# )
|
91 |
-
# chkbox = gr.Checkbox(label="Apply LM", value=False)
|
92 |
-
|
93 |
-
|
94 |
-
# gr.Interface(parse, inputs = [input_, chkbox], outputs=txtbox,
|
95 |
-
# streaming=True, interactive=True,
|
96 |
-
# analytics_enabled=False, show_tips=False, enable_queue=True).launch(inline=False);
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
processor = Wav2Vec2Processor.from_pretrained(model_id)
|
103 |
model = Wav2Vec2ForCTC.from_pretrained(model_id)
|
104 |
|
|
|
105 |
# input_ = gr.inputs.File(source="upload", type="filepath") # Change input source to "upload" and type to "audio"
|
106 |
input_ = gr.Audio(source="upload", type="filepath")
|
107 |
txtbox = gr.Textbox(
|
108 |
label="Output from the model will appear here:",
|
109 |
lines=5
|
110 |
)
|
111 |
-
chkbox = gr.Checkbox(label="Apply LM", value=False)
|
112 |
|
113 |
-
gr.Interface(parse, inputs=[input_, chkbox], outputs=txtbox,
|
|
|
114 |
streaming=True, interactive=True,
|
115 |
analytics_enabled=False, show_tips=False, enable_queue=True).launch(inline=False);
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
|
|
24 |
subprocess.call(command, shell=True)
|
25 |
|
26 |
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
def parse_transcription(logits):
|
28 |
predicted_ids = torch.argmax(logits, dim=-1)
|
29 |
transcription = processor.decode(predicted_ids[0], skip_special_tokens=True)
|
30 |
return transcription
|
31 |
|
32 |
+
|
33 |
+
def parse(wav_file):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
input_values = read_file_and_process(wav_file)
|
35 |
with torch.no_grad():
|
36 |
logits = model(**input_values).logits
|
37 |
|
38 |
+
if wav_file:
|
|
|
|
|
|
|
39 |
return parse_transcription(logits)
|
40 |
|
41 |
|
|
|
57 |
# This is hindi
|
58 |
model_id = "Harveenchadha/vakyansh-wav2vec2-hindi-him-4200"
|
59 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
processor = Wav2Vec2Processor.from_pretrained(model_id)
|
61 |
model = Wav2Vec2ForCTC.from_pretrained(model_id)
|
62 |
|
63 |
+
# input_ = gr.Audio(source="microphone", type="filepath")
|
64 |
# input_ = gr.inputs.File(source="upload", type="filepath") # Change input source to "upload" and type to "audio"
|
65 |
input_ = gr.Audio(source="upload", type="filepath")
|
66 |
txtbox = gr.Textbox(
|
67 |
label="Output from the model will appear here:",
|
68 |
lines=5
|
69 |
)
|
70 |
+
# chkbox = gr.Checkbox(label="Apply LM", value=False)
|
71 |
|
72 |
+
# gr.Interface(parse, inputs=[input_, chkbox], outputs=txtbox,
|
73 |
+
gr.Interface(parse, inputs=[input_], outputs=txtbox,
|
74 |
streaming=True, interactive=True,
|
75 |
analytics_enabled=False, show_tips=False, enable_queue=True).launch(inline=False);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|