Create new file
Browse files
app.py
ADDED
@@ -0,0 +1,288 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
import time
|
3 |
+
from pathlib import Path
|
4 |
+
|
5 |
+
import gradio as gr
|
6 |
+
import nltk
|
7 |
+
from cleantext import clean
|
8 |
+
|
9 |
+
from summarize import load_model_and_tokenizer, summarize_via_tokenbatches
|
10 |
+
from utils import load_example_filenames, truncate_word_count
|
11 |
+
|
12 |
+
_here = Path(__file__).parent
|
13 |
+
|
14 |
+
nltk.download("stopwords") # TODO=find where this requirement originates from
|
15 |
+
|
16 |
+
logging.basicConfig(
|
17 |
+
level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s"
|
18 |
+
)
|
19 |
+
|
20 |
+
|
21 |
+
def proc_submission(
|
22 |
+
input_text: str,
|
23 |
+
model_size: str,
|
24 |
+
num_beams,
|
25 |
+
token_batch_length,
|
26 |
+
length_penalty,
|
27 |
+
repetition_penalty,
|
28 |
+
no_repeat_ngram_size,
|
29 |
+
max_input_length: int = 768,
|
30 |
+
):
|
31 |
+
"""
|
32 |
+
proc_submission - a helper function for the gradio module to process submissions
|
33 |
+
|
34 |
+
Args:
|
35 |
+
input_text (str): the input text to summarize
|
36 |
+
model_size (str): the size of the model to use
|
37 |
+
num_beams (int): the number of beams to use
|
38 |
+
token_batch_length (int): the length of the token batches to use
|
39 |
+
length_penalty (float): the length penalty to use
|
40 |
+
repetition_penalty (float): the repetition penalty to use
|
41 |
+
no_repeat_ngram_size (int): the no repeat ngram size to use
|
42 |
+
max_input_length (int, optional): the maximum input length to use. Defaults to 768.
|
43 |
+
|
44 |
+
Returns:
|
45 |
+
str in HTML format, string of the summary, str of score
|
46 |
+
"""
|
47 |
+
|
48 |
+
settings = {
|
49 |
+
"length_penalty": float(length_penalty),
|
50 |
+
"repetition_penalty": float(repetition_penalty),
|
51 |
+
"no_repeat_ngram_size": int(no_repeat_ngram_size),
|
52 |
+
"encoder_no_repeat_ngram_size": 4,
|
53 |
+
"num_beams": int(num_beams),
|
54 |
+
"min_length": 4,
|
55 |
+
"max_length": int(token_batch_length // 4),
|
56 |
+
"early_stopping": True,
|
57 |
+
"do_sample": False,
|
58 |
+
}
|
59 |
+
st = time.perf_counter()
|
60 |
+
history = {}
|
61 |
+
clean_text = clean(input_text, lower=False)
|
62 |
+
max_input_length = 2048 if model_size == "base" else max_input_length
|
63 |
+
processed = truncate_word_count(clean_text, max_input_length)
|
64 |
+
|
65 |
+
if processed["was_truncated"]:
|
66 |
+
tr_in = processed["truncated_text"]
|
67 |
+
msg = f"Input text was truncated to {max_input_length} words (based on whitespace)"
|
68 |
+
logging.warning(msg)
|
69 |
+
history["WARNING"] = msg
|
70 |
+
else:
|
71 |
+
tr_in = input_text
|
72 |
+
msg = None
|
73 |
+
|
74 |
+
_summaries = summarize_via_tokenbatches(
|
75 |
+
tr_in,
|
76 |
+
model_sm if model_size == "base" else model,
|
77 |
+
tokenizer_sm if model_size == "base" else tokenizer,
|
78 |
+
batch_length=token_batch_length,
|
79 |
+
**settings,
|
80 |
+
)
|
81 |
+
sum_text = [f"Section {i}: " + s["summary"][0] for i, s in enumerate(_summaries)]
|
82 |
+
sum_scores = [
|
83 |
+
f" - Section {i}: {round(s['summary_score'],4)}"
|
84 |
+
for i, s in enumerate(_summaries)
|
85 |
+
]
|
86 |
+
|
87 |
+
sum_text_out = "\n".join(sum_text)
|
88 |
+
history["Summary Scores"] = "<br><br>"
|
89 |
+
scores_out = "\n".join(sum_scores)
|
90 |
+
rt = round((time.perf_counter() - st) / 60, 2)
|
91 |
+
print(f"Runtime: {rt} minutes")
|
92 |
+
html = ""
|
93 |
+
html += f"<p>Runtime: {rt} minutes on CPU</p>"
|
94 |
+
if msg is not None:
|
95 |
+
html += f"<h2>WARNING:</h2><hr><b>{msg}</b><br><br>"
|
96 |
+
|
97 |
+
html += ""
|
98 |
+
|
99 |
+
return html, sum_text_out, scores_out
|
100 |
+
|
101 |
+
|
102 |
+
def load_single_example_text(
|
103 |
+
example_path: str or Path,
|
104 |
+
):
|
105 |
+
"""
|
106 |
+
load_single_example - a helper function for the gradio module to load examples
|
107 |
+
Returns:
|
108 |
+
list of str, the examples
|
109 |
+
"""
|
110 |
+
global name_to_path
|
111 |
+
full_ex_path = name_to_path[example_path]
|
112 |
+
full_ex_path = Path(full_ex_path)
|
113 |
+
# load the examples into a list
|
114 |
+
with open(full_ex_path, "r", encoding="utf-8", errors="ignore") as f:
|
115 |
+
raw_text = f.read()
|
116 |
+
text = clean(raw_text, lower=False)
|
117 |
+
return text
|
118 |
+
|
119 |
+
|
120 |
+
def load_uploaded_file(file_obj):
|
121 |
+
"""
|
122 |
+
load_uploaded_file - process an uploaded file
|
123 |
+
Args:
|
124 |
+
file_obj (POTENTIALLY list): Gradio file object inside a list
|
125 |
+
Returns:
|
126 |
+
str, the uploaded file contents
|
127 |
+
"""
|
128 |
+
|
129 |
+
# file_path = Path(file_obj[0].name)
|
130 |
+
|
131 |
+
# check if mysterious file object is a list
|
132 |
+
if isinstance(file_obj, list):
|
133 |
+
file_obj = file_obj[0]
|
134 |
+
file_path = Path(file_obj.name)
|
135 |
+
try:
|
136 |
+
with open(file_path, "r", encoding="utf-8", errors="ignore") as f:
|
137 |
+
raw_text = f.read()
|
138 |
+
text = clean(raw_text, lower=False)
|
139 |
+
return text
|
140 |
+
except Exception as e:
|
141 |
+
logging.info(f"Trying to load file with path {file_path}, error: {e}")
|
142 |
+
return "Error: Could not read file. Ensure that it is a valid text file with encoding UTF-8."
|
143 |
+
|
144 |
+
|
145 |
+
if __name__ == "__main__":
|
146 |
+
|
147 |
+
model, tokenizer = load_model_and_tokenizer("pszemraj/led-large-book-summary")
|
148 |
+
model_sm, tokenizer_sm = load_model_and_tokenizer("pszemraj/led-base-book-summary")
|
149 |
+
|
150 |
+
name_to_path = load_example_filenames(_here / "examples")
|
151 |
+
logging.info(f"Loaded {len(name_to_path)} examples")
|
152 |
+
demo = gr.Blocks()
|
153 |
+
|
154 |
+
with demo:
|
155 |
+
|
156 |
+
gr.Markdown("# Long-Form Summarization: LED & BookSum")
|
157 |
+
gr.Markdown(
|
158 |
+
"A simple demo using a fine-tuned LED model to summarize long-form text. See [model card](https://huggingface.co/pszemraj/led-large-book-summary) for a notebook with GPU inference (much faster) on Colab."
|
159 |
+
)
|
160 |
+
with gr.Column():
|
161 |
+
|
162 |
+
gr.Markdown("## Load Inputs & Select Parameters")
|
163 |
+
gr.Markdown(
|
164 |
+
"Enter text below in the text area. The text will be summarized [using the selected parameters](https://huggingface.co/blog/how-to-generate). Optionally load an example below or upload a file."
|
165 |
+
)
|
166 |
+
with gr.Row():
|
167 |
+
model_size = gr.Radio(
|
168 |
+
choices=["base", "large"], label="Model Variant", value="large"
|
169 |
+
)
|
170 |
+
num_beams = gr.Radio(
|
171 |
+
choices=[2, 3, 4],
|
172 |
+
label="Beam Search: # of Beams",
|
173 |
+
value=2,
|
174 |
+
)
|
175 |
+
gr.Markdown(
|
176 |
+
"_The base model is less performant than the large model, but is faster and will accept up to 2048 words per input (Large model accepts up to 768)._"
|
177 |
+
)
|
178 |
+
with gr.Row():
|
179 |
+
length_penalty = gr.inputs.Slider(
|
180 |
+
minimum=0.5,
|
181 |
+
maximum=1.0,
|
182 |
+
label="length penalty",
|
183 |
+
default=0.7,
|
184 |
+
step=0.05,
|
185 |
+
)
|
186 |
+
token_batch_length = gr.Radio(
|
187 |
+
choices=[512, 768, 1024],
|
188 |
+
label="token batch length",
|
189 |
+
value=512,
|
190 |
+
)
|
191 |
+
|
192 |
+
with gr.Row():
|
193 |
+
repetition_penalty = gr.inputs.Slider(
|
194 |
+
minimum=1.0,
|
195 |
+
maximum=5.0,
|
196 |
+
label="repetition penalty",
|
197 |
+
default=3.5,
|
198 |
+
step=0.1,
|
199 |
+
)
|
200 |
+
no_repeat_ngram_size = gr.Radio(
|
201 |
+
choices=[2, 3, 4],
|
202 |
+
label="no repeat ngram size",
|
203 |
+
value=3,
|
204 |
+
)
|
205 |
+
with gr.Row():
|
206 |
+
example_name = gr.Dropdown(
|
207 |
+
list(name_to_path.keys()),
|
208 |
+
label="Choose an Example",
|
209 |
+
)
|
210 |
+
load_examples_button = gr.Button(
|
211 |
+
"Load Example",
|
212 |
+
)
|
213 |
+
input_text = gr.Textbox(
|
214 |
+
lines=6,
|
215 |
+
label="Input Text (for summarization)",
|
216 |
+
placeholder="Enter text to summarize, the text will be cleaned and truncated on Spaces. Narrative, academic (both papers and lecture transcription), and article text work well. May take a bit to generate depending on the input text :)",
|
217 |
+
)
|
218 |
+
gr.Markdown("Upload your own file:")
|
219 |
+
with gr.Row():
|
220 |
+
uploaded_file = gr.File(
|
221 |
+
label="Upload a text file",
|
222 |
+
file_count="single",
|
223 |
+
type="file",
|
224 |
+
)
|
225 |
+
load_file_button = gr.Button("Load Uploaded File")
|
226 |
+
|
227 |
+
gr.Markdown("---")
|
228 |
+
|
229 |
+
with gr.Column():
|
230 |
+
gr.Markdown("## Generate Summary")
|
231 |
+
gr.Markdown(
|
232 |
+
"Summary generation should take approximately 1-2 minutes for most settings."
|
233 |
+
)
|
234 |
+
summarize_button = gr.Button(
|
235 |
+
"Summarize!",
|
236 |
+
variant="primary",
|
237 |
+
)
|
238 |
+
|
239 |
+
output_text = gr.HTML("<p><em>Output will appear below:</em></p>")
|
240 |
+
gr.Markdown("### Summary Output")
|
241 |
+
summary_text = gr.Textbox(
|
242 |
+
label="Summary", placeholder="The generated summary will appear here"
|
243 |
+
)
|
244 |
+
gr.Markdown(
|
245 |
+
"The summary scores can be thought of as representing the quality of the summary. less-negative numbers (closer to 0) are better:"
|
246 |
+
)
|
247 |
+
summary_scores = gr.Textbox(
|
248 |
+
label="Summary Scores", placeholder="Summary scores will appear here"
|
249 |
+
)
|
250 |
+
|
251 |
+
gr.Markdown("---")
|
252 |
+
|
253 |
+
with gr.Column():
|
254 |
+
gr.Markdown("## About the Model")
|
255 |
+
gr.Markdown(
|
256 |
+
"- [This model](https://huggingface.co/pszemraj/led-large-book-summary) is a fine-tuned checkpoint of [allenai/led-large-16384](https://huggingface.co/allenai/led-large-16384) on the [BookSum dataset](https://arxiv.org/abs/2105.08209).The goal was to create a model that can generalize well and is useful in summarizing lots of text in academic and daily usage."
|
257 |
+
)
|
258 |
+
gr.Markdown(
|
259 |
+
"- The two most important parameters-empirically-are the `num_beams` and `token_batch_length`. However, increasing these will also increase the amount of time it takes to generate a summary. The `length_penalty` and `repetition_penalty` parameters are also important for the model to generate good summaries."
|
260 |
+
)
|
261 |
+
gr.Markdown(
|
262 |
+
"- The model can be used with tag [pszemraj/led-large-book-summary](https://huggingface.co/pszemraj/led-large-book-summary). See the model card for details on usage & a notebook for a tutorial."
|
263 |
+
)
|
264 |
+
gr.Markdown("---")
|
265 |
+
|
266 |
+
load_examples_button.click(
|
267 |
+
fn=load_single_example_text, inputs=[example_name], outputs=[input_text]
|
268 |
+
)
|
269 |
+
|
270 |
+
load_file_button.click(
|
271 |
+
fn=load_uploaded_file, inputs=uploaded_file, outputs=[input_text]
|
272 |
+
)
|
273 |
+
|
274 |
+
summarize_button.click(
|
275 |
+
fn=proc_submission,
|
276 |
+
inputs=[
|
277 |
+
input_text,
|
278 |
+
model_size,
|
279 |
+
num_beams,
|
280 |
+
token_batch_length,
|
281 |
+
length_penalty,
|
282 |
+
repetition_penalty,
|
283 |
+
no_repeat_ngram_size,
|
284 |
+
],
|
285 |
+
outputs=[output_text, summary_text, summary_scores],
|
286 |
+
)
|
287 |
+
|
288 |
+
demo.launch(enable_queue=True, share=True)
|