import logging
import time
from pathlib import Path
import gradio as gr
import nltk
from cleantext import clean
from summarize import load_model_and_tokenizer, summarize_via_tokenbatches
from utils import load_example_filenames, truncate_word_count
_here = Path(__file__).parent
nltk.download("stopwords") # TODO=find where this requirement originates from
logging.basicConfig(
level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s"
)
def proc_submission(
input_text: str,
model_type: str,
summary_type: str,
num_beams,
token_batch_length,
length_penalty,
repetition_penalty,
no_repeat_ngram_size,
max_input_length: int = 768,
):
"""
proc_submission - a helper function for the gradio module to process submissions
Args:
input_text (str): the input text to summarize
model_size (str): the size of the model to use
num_beams (int): the number of beams to use
token_batch_length (int): the length of the token batches to use
length_penalty (float): the length penalty to use
repetition_penalty (float): the repetition penalty to use
no_repeat_ngram_size (int): the no repeat ngram size to use
max_input_length (int, optional): the maximum input length to use. Defaults to 768.
Returns:
str in HTML format, string of the summary, str of compression rate in %
"""
settings = {
"length_penalty": float(length_penalty),
"repetition_penalty": float(repetition_penalty),
"no_repeat_ngram_size": 3,
"encoder_no_repeat_ngram_size": 4,
"num_beams": int(num_beams),
"min_length": 11,
"max_length": int(token_batch_length // 4),
"early_stopping": True,
#"do_sample": False,
}
st = time.perf_counter()
history = {}
clean_text = clean(input_text, lower=False)
#max_input_length = 2048 if model_type == "tldr" else max_input_length
processed = truncate_word_count(clean_text, max_input_length)
if processed["was_truncated"]:
tr_in = processed["truncated_text"]
msg = f"Input text was truncated to {max_input_length} words (based on whitespace)"
logging.warning(msg)
history["WARNING"] = msg
else:
tr_in = input_text
msg = None
_summaries = summarize_via_tokenbatches(
tr_in,
model_led_det if (model_type == "LED" & summary_type == "detailed") else model_det,
tokenizer_led_det if (model_type == "LED" & summary_type == "detailed") else tokenizer_det,
model_led_tldr if (model_type == "LED" & summary_type == "tldr") else model_tldr,
tokenizer_led_tldr if (model_type == "LED" & summary_type == "tldr") else tokenizer_tldr,
batch_length=token_batch_length,
**settings,
)
sum_text = [f"Section {i}: " + s["summary"][0] for i, s in enumerate(_summaries)]
compression_rate = [
f" - Section {i}: {round(s['compression_rate'],3)}"
for i, s in enumerate(_summaries)
]
sum_text_out = "\n".join(sum_text)
history["compression_rate"] = "
"
rate_out = "\n".join(compression_rate)
rt = round((time.perf_counter() - st) / 60, 2)
print(f"Runtime: {rt} minutes")
html = ""
html += f"
Runtime: {rt} minutes on CPU inference
" if msg is not None: html += f"Output will appear below:
") gr.Markdown("### Summary Output") summary_text = gr.Textbox( label="Summary 📝", placeholder="The generated 📝 will appear here" ) gr.Markdown( "The compression rate indicates the ratio between the machine-generated summary length and the input text (from 0% to 100%). The higher the compression rate the more extreme the summary is." ) compression_rate = gr.Textbox( label="Compression rate 🗜", placeholder="The 🗜 will appear here" ) gr.Markdown("---") with gr.Column(): gr.Markdown("## About the Models") gr.Markdown( "- [Blaise-g/longt5_tglobal_large_sumpubmed](https://huggingface.co/Blaise-g/longt5_tglobal_large_sumpubmed) is a fine-tuned checkpoint of [Stancld/longt5-tglobal-large-16384-pubmed-3k_steps](https://huggingface.co/Stancld/longt5-tglobal-large-16384-pubmed-3k_steps) on the [SumPubMed dataset](https://aclanthology.org/2021.acl-srw.30/). [Blaise-g/longt5_tglobal_large_scitldr](https://huggingface.co/Blaise-g/longt5_tglobal_large_scitldr) is a fine-tuned checkpoint of [Blaise-g/longt5_tglobal_large_sumpubmed](https://huggingface.co/Blaise-g/longt5_tglobal_large_sumpubmed) on the [Scitldr dataset](https://arxiv.org/abs/2004.15011). The goal was to create two models capable of handling the complex information contained in long biomedical documents and subsequently producing scientific summaries according to one of the two possible levels of conciseness: 1) A long explanatory synopsis that retains the majority of domain-specific language used in the original source text. 2)A one sentence long, TLDR style summary." ) gr.Markdown( "- The two most important parameters-empirically-are the `num_beams` and `token_batch_length`. However, increasing these will also increase the amount of time it takes to generate a summary. The `length_penalty` and `repetition_penalty` parameters are also important for the model to generate good summaries." ) gr.Markdown("---") load_examples_button.click( fn=load_single_example_text, inputs=[example_name], outputs=[input_text] ) load_file_button.click( fn=load_uploaded_file, inputs=uploaded_file, outputs=[input_text] ) summarize_button.click( fn=proc_submission, inputs=[ input_text, summary_type, model_type, num_beams, token_batch_length, length_penalty, repetition_penalty, no_repeat_ngram_size, ], outputs=[output_text, summary_text, compression_rate], ) demo.launch(enable_queue=True, share=False)