File size: 11,609 Bytes
7ff2ba3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 |
import math
import random
from typing import Optional, Tuple
from fairseq.checkpoint_utils import load_model_ensemble_and_task
from fairseq.utils import index_put
import numpy as np
import torch
import torch.nn.functional as F
# @torch.jit.script
def pad_to_multiple(x, multiple, dim=-1, value=0):
# Inspired from https://github.com/lucidrains/local-attention/blob/master/local_attention/local_attention.py#L41
if x is None:
return None, 0
tsz = x.size(dim)
m = tsz / multiple
remainder = math.ceil(m) * multiple - tsz
if int(tsz % multiple) == 0:
return x, 0
pad_offset = (0,) * (-1 - dim) * 2
return F.pad(x, (*pad_offset, 0, remainder), value=value), remainder
def extract_features(
self,
x,
padding_mask=None,
tgt_layer=None,
min_layer=0,
):
if padding_mask is not None:
x = index_put(x, padding_mask, 0)
x_conv = self.pos_conv(x.transpose(1, 2))
x_conv = x_conv.transpose(1, 2)
x = x + x_conv
if not self.layer_norm_first:
x = self.layer_norm(x)
# pad to the sequence length dimension
x, pad_length = pad_to_multiple(x, self.required_seq_len_multiple, dim=-2, value=0)
if pad_length > 0 and padding_mask is None:
padding_mask = x.new_zeros((x.size(0), x.size(1)), dtype=torch.bool)
padding_mask[:, -pad_length:] = True
else:
padding_mask, _ = pad_to_multiple(
padding_mask, self.required_seq_len_multiple, dim=-1, value=True
)
x = F.dropout(x, p=self.dropout, training=self.training)
# B x T x C -> T x B x C
x = x.transpose(0, 1)
layer_results = []
r = None
for i, layer in enumerate(self.layers):
dropout_probability = np.random.random() if self.layerdrop > 0 else 1
if not self.training or (dropout_probability > self.layerdrop):
x, (z, lr) = layer(
x, self_attn_padding_mask=padding_mask, need_weights=False
)
if i >= min_layer:
layer_results.append((x, z, lr))
if i == tgt_layer:
r = x
break
if r is not None:
x = r
# T x B x C -> B x T x C
x = x.transpose(0, 1)
# undo paddding
if pad_length > 0:
x = x[:, :-pad_length]
def undo_pad(a, b, c):
return (
a[:-pad_length],
b[:-pad_length] if b is not None else b,
c[:-pad_length],
)
layer_results = [undo_pad(*u) for u in layer_results]
return x, layer_results
def compute_mask_indices(
shape: Tuple[int, int],
padding_mask: Optional[torch.Tensor],
mask_prob: float,
mask_length: int,
mask_type: str = "static",
mask_other: float = 0.0,
min_masks: int = 0,
no_overlap: bool = False,
min_space: int = 0,
require_same_masks: bool = True,
mask_dropout: float = 0.0,
) -> torch.Tensor:
"""
Computes random mask spans for a given shape
Args:
shape: the the shape for which to compute masks.
should be of size 2 where first element is batch size and 2nd is timesteps
padding_mask: optional padding mask of the same size as shape, which will prevent masking padded elements
mask_prob: probability for each token to be chosen as start of the span to be masked. this will be multiplied by
number of timesteps divided by length of mask span to mask approximately this percentage of all elements.
however due to overlaps, the actual number will be smaller (unless no_overlap is True)
mask_type: how to compute mask lengths
static = fixed size
uniform = sample from uniform distribution [mask_other, mask_length*2]
normal = sample from normal distribution with mean mask_length and stdev mask_other. mask is min 1 element
poisson = sample from possion distribution with lambda = mask length
min_masks: minimum number of masked spans
no_overlap: if false, will switch to an alternative recursive algorithm that prevents spans from overlapping
min_space: only used if no_overlap is True, this is how many elements to keep unmasked between spans
require_same_masks: if true, will randomly drop out masks until same amount of masks remains in each sample
mask_dropout: randomly dropout this percentage of masks in each example
"""
bsz, all_sz = shape
mask = torch.full((bsz, all_sz), False)
all_num_mask = int(
# add a random number for probabilistic rounding
mask_prob * all_sz / float(mask_length)
+ torch.rand([1]).item()
)
all_num_mask = max(min_masks, all_num_mask)
mask_idcs = []
for i in range(bsz):
if padding_mask is not None:
sz = all_sz - padding_mask[i].long().sum().item()
num_mask = int(mask_prob * sz / float(mask_length) + np.random.rand())
num_mask = max(min_masks, num_mask)
else:
sz = all_sz
num_mask = all_num_mask
if mask_type == "static":
lengths = torch.full([num_mask], mask_length)
elif mask_type == "uniform":
lengths = torch.randint(mask_other, mask_length * 2 + 1, size=[num_mask])
elif mask_type == "normal":
lengths = torch.normal(mask_length, mask_other, size=[num_mask])
lengths = [max(1, int(round(x))) for x in lengths]
else:
raise Exception("unknown mask selection " + mask_type)
if sum(lengths) == 0:
lengths[0] = min(mask_length, sz - 1)
if no_overlap:
mask_idc = []
def arrange(s, e, length, keep_length):
span_start = torch.randint(low=s, high=e - length, size=[1]).item()
mask_idc.extend(span_start + i for i in range(length))
new_parts = []
if span_start - s - min_space >= keep_length:
new_parts.append((s, span_start - min_space + 1))
if e - span_start - length - min_space > keep_length:
new_parts.append((span_start + length + min_space, e))
return new_parts
parts = [(0, sz)]
min_length = min(lengths)
for length in sorted(lengths, reverse=True):
t = [e - s if e - s >= length + min_space else 0 for s, e in parts]
lens = torch.asarray(t, dtype=torch.int)
l_sum = torch.sum(lens)
if l_sum == 0:
break
probs = lens / torch.sum(lens)
c = torch.multinomial(probs.float(), len(parts)).item()
s, e = parts.pop(c)
parts.extend(arrange(s, e, length, min_length))
mask_idc = torch.asarray(mask_idc)
else:
min_len = min(lengths)
if sz - min_len <= num_mask:
min_len = sz - num_mask - 1
mask_idc = torch.asarray(
random.sample([i for i in range(sz - min_len)], num_mask)
)
mask_idc = torch.asarray(
[
mask_idc[j] + offset
for j in range(len(mask_idc))
for offset in range(lengths[j])
]
)
mask_idcs.append(torch.unique(mask_idc[mask_idc < sz]))
min_len = min([len(m) for m in mask_idcs])
for i, mask_idc in enumerate(mask_idcs):
if isinstance(mask_idc, torch.Tensor):
mask_idc = torch.asarray(mask_idc, dtype=torch.float)
if len(mask_idc) > min_len and require_same_masks:
mask_idc = torch.asarray(
random.sample([i for i in range(mask_idc)], min_len)
)
if mask_dropout > 0:
num_holes = int(round(len(mask_idc) * mask_dropout))
mask_idc = torch.asarray(
random.sample([i for i in range(mask_idc)], len(mask_idc) - num_holes)
)
mask[i, mask_idc.int()] = True
return mask
def apply_mask(self, x, padding_mask, target_list):
B, T, C = x.shape
torch.zeros_like(x)
if self.mask_prob > 0:
mask_indices = compute_mask_indices(
(B, T),
padding_mask,
self.mask_prob,
self.mask_length,
self.mask_selection,
self.mask_other,
min_masks=2,
no_overlap=self.no_mask_overlap,
min_space=self.mask_min_space,
)
mask_indices = mask_indices.to(x.device)
x[mask_indices] = self.mask_emb
else:
mask_indices = None
if self.mask_channel_prob > 0:
mask_channel_indices = compute_mask_indices(
(B, C),
None,
self.mask_channel_prob,
self.mask_channel_length,
self.mask_channel_selection,
self.mask_channel_other,
no_overlap=self.no_mask_channel_overlap,
min_space=self.mask_channel_min_space,
)
mask_channel_indices = (
mask_channel_indices.to(x.device).unsqueeze(1).expand(-1, T, -1)
)
x[mask_channel_indices] = 0
return x, mask_indices
def get_hubert(model_path="assets/hubert/hubert_base.pt", device=torch.device("cpu")):
models, _, _ = load_model_ensemble_and_task(
[model_path],
suffix="",
)
hubert_model = models[0]
hubert_model = hubert_model.to(device)
def _apply_mask(x, padding_mask, target_list):
return apply_mask(hubert_model, x, padding_mask, target_list)
hubert_model.apply_mask = _apply_mask
def _extract_features(
x,
padding_mask=None,
tgt_layer=None,
min_layer=0,
):
return extract_features(
hubert_model.encoder,
x,
padding_mask=padding_mask,
tgt_layer=tgt_layer,
min_layer=min_layer,
)
hubert_model.encoder.extract_features = _extract_features
hubert_model._forward = hubert_model.forward
def hubert_extract_features(
self,
source: torch.Tensor,
padding_mask: Optional[torch.Tensor] = None,
mask: bool = False,
ret_conv: bool = False,
output_layer: Optional[int] = None,
) -> Tuple[torch.Tensor, torch.Tensor]:
res = self._forward(
source,
padding_mask=padding_mask,
mask=mask,
features_only=True,
output_layer=output_layer,
)
feature = res["features"] if ret_conv else res["x"]
return feature, res["padding_mask"]
def _hubert_extract_features(
source: torch.Tensor,
padding_mask: Optional[torch.Tensor] = None,
mask: bool = False,
ret_conv: bool = False,
output_layer: Optional[int] = None,
) -> Tuple[torch.Tensor, torch.Tensor]:
return hubert_extract_features(
hubert_model, source, padding_mask, mask, ret_conv, output_layer
)
hubert_model.extract_features = _hubert_extract_features
def infer(source, padding_mask, output_layer: torch.Tensor):
output_layer = output_layer.item()
logits = hubert_model.extract_features(
source=source, padding_mask=padding_mask, output_layer=output_layer
)
feats = hubert_model.final_proj(logits[0]) if output_layer == 9 else logits[0]
return feats
hubert_model.infer = infer
# hubert_model.forward=infer
# hubert_model.forward
return hubert_model
|