rvc-ui / rvc /f0 /rmvpe.py
Blane187's picture
Upload folder using huggingface_hub
7ff2ba3 verified
from io import BytesIO
import os
from typing import Any, Optional, Union
import numpy as np
import torch
import torch.nn.functional as F
from rvc.jit import load_inputs, get_jit_model, export_jit_model, save_pickle
from .mel import MelSpectrogram
from .f0 import F0Predictor
from .models import get_rmvpe
def rmvpe_jit_export(
model_path: str,
mode: str = "script",
inputs_path: str = None,
save_path: str = None,
device=torch.device("cpu"),
is_half=False,
):
if not save_path:
save_path = model_path.rstrip(".pth")
save_path += ".half.jit" if is_half else ".jit"
if "cuda" in str(device) and ":" not in str(device):
device = torch.device("cuda:0")
model = get_rmvpe(model_path, device, is_half)
inputs = None
if mode == "trace":
inputs = load_inputs(inputs_path, device, is_half)
ckpt = export_jit_model(model, mode, inputs, device, is_half)
ckpt["device"] = str(device)
save_pickle(ckpt, save_path)
return ckpt
class RMVPE(F0Predictor):
def __init__(
self,
model_path: str,
is_half: bool,
device: str,
use_jit=False,
):
hop_length = 160
f0_min = 30
f0_max = 8000
sampling_rate = 16000
super().__init__(
hop_length,
f0_min,
f0_max,
sampling_rate,
device,
)
self.is_half = is_half
cents_mapping = 20 * np.arange(360) + 1997.3794084376191
self.cents_mapping = np.pad(cents_mapping, (4, 4)) # 368
self.mel_extractor = MelSpectrogram(
is_half=is_half,
n_mel_channels=128,
sampling_rate=sampling_rate,
win_length=1024,
hop_length=hop_length,
mel_fmin=f0_min,
mel_fmax=f0_max,
device=self.device,
).to(self.device)
if "privateuseone" in str(self.device):
import onnxruntime as ort
self.model = ort.InferenceSession(
"%s/rmvpe.onnx" % os.environ["rmvpe_root"],
providers=["DmlExecutionProvider"],
)
else:
def rmvpe_jit_model():
ckpt = get_jit_model(model_path, is_half, self.device, rmvpe_jit_export)
model = torch.jit.load(BytesIO(ckpt["model"]), map_location=self.device)
model = model.to(self.device)
return model
if use_jit and not (is_half and "cpu" in str(self.device)):
self.model = rmvpe_jit_model()
else:
self.model = get_rmvpe(model_path, self.device, is_half)
def compute_f0(
self,
wav: np.ndarray,
p_len: Optional[int] = None,
filter_radius: Optional[Union[int, float]] = None,
):
if p_len is None:
p_len = wav.shape[0] // self.hop_length
if not torch.is_tensor(wav):
wav = torch.from_numpy(wav)
mel = self.mel_extractor(wav.float().to(self.device).unsqueeze(0), center=True)
hidden = self._mel2hidden(mel)
if "privateuseone" not in str(self.device):
hidden = hidden.squeeze(0).cpu().numpy()
else:
hidden = hidden[0]
if self.is_half == True:
hidden = hidden.astype("float32")
f0 = self._decode(hidden, thred=filter_radius)
return self._interpolate_f0(self._resize_f0(f0, p_len))[0]
def _to_local_average_cents(self, salience, threshold=0.05):
center = np.argmax(salience, axis=1) # 帧长#index
salience = np.pad(salience, ((0, 0), (4, 4))) # 帧长,368
center += 4
todo_salience = []
todo_cents_mapping = []
starts = center - 4
ends = center + 5
for idx in range(salience.shape[0]):
todo_salience.append(salience[:, starts[idx] : ends[idx]][idx])
todo_cents_mapping.append(self.cents_mapping[starts[idx] : ends[idx]])
todo_salience = np.array(todo_salience) # 帧长,9
todo_cents_mapping = np.array(todo_cents_mapping) # 帧长,9
product_sum = np.sum(todo_salience * todo_cents_mapping, 1)
weight_sum = np.sum(todo_salience, 1) # 帧长
devided = product_sum / weight_sum # 帧长
maxx = np.max(salience, axis=1) # 帧长
devided[maxx <= threshold] = 0
return devided
def _mel2hidden(self, mel):
with torch.no_grad():
n_frames = mel.shape[-1]
n_pad = 32 * ((n_frames - 1) // 32 + 1) - n_frames
if n_pad > 0:
mel = F.pad(mel, (0, n_pad), mode="constant")
if "privateuseone" in str(self.device):
onnx_input_name = self.model.get_inputs()[0].name
onnx_outputs_names = self.model.get_outputs()[0].name
hidden = self.model.run(
[onnx_outputs_names],
input_feed={onnx_input_name: mel.cpu().numpy()},
)[0]
else:
mel = mel.half() if self.is_half else mel.float()
hidden = self.model(mel)
return hidden[:, :n_frames]
def _decode(self, hidden, thred=0.03):
cents_pred = self._to_local_average_cents(hidden, threshold=thred)
f0 = 10 * (2 ** (cents_pred / 1200))
f0[f0 == 10] = 0
# f0 = np.array([10 * (2 ** (cent_pred / 1200)) if cent_pred else 0 for cent_pred in cents_pred])
return f0