Blessin commited on
Commit
5928544
·
verified ·
1 Parent(s): c6751de

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +48 -0
app.py ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # A simple Linear Regression example with TensorFlow
2
+
3
+ import tensorflow as tf
4
+ import numpy as np
5
+ import streamlit as st
6
+ import matplotlib.pyplot as plt
7
+
8
+ # Define the model
9
+ model = tf.keras.Sequential([
10
+ tf.keras.layers.Dense(units=1, input_shape=[1])
11
+ ])
12
+
13
+ # Compile the model with an optimizer and loss function
14
+ model.compile(optimizer='sgd', loss='mse')
15
+
16
+ # Training data
17
+ xs = np.array([1.0, 2.0, 3.0, 4.0, 5.0], dtype=float)
18
+ ys = np.array([1.5, 2.0, 2.5, 3.0, 3.5], dtype=float)
19
+
20
+ # Streamlit UI
21
+ st.title('Simple Linear Regression with TensorFlow')
22
+
23
+ # User input for the new value to predict
24
+ input_value = st.number_input('Enter your input value:', value=1.0, format="%.1f")
25
+
26
+ # User input for epochs
27
+ epochs = st.sidebar.slider("Number of epochs", 10, 100, 10)
28
+
29
+ # Button to train the model and make prediction
30
+ if st.button('Train Model and Predict'):
31
+ with st.spinner('Training...'):
32
+ model.fit(xs, ys, epochs=epochs)
33
+ st.success('Training completed!')
34
+
35
+ # Make prediction
36
+ prediction = model.predict([input_value])
37
+ st.write(f'For input {input_value}, the prediction is {prediction[0][0]}')
38
+
39
+ # Predictions for visualization
40
+ predictions = model.predict(xs)
41
+
42
+ # Plotting
43
+ plt.scatter(xs, ys, label='Actual')
44
+ plt.plot(xs, predictions, color='red', label='Predicted')
45
+ plt.xlabel('Input Feature')
46
+ plt.ylabel('Output Value')
47
+ plt.legend()
48
+ st.pyplot(plt)