Blessin commited on
Commit
7c589a0
·
verified ·
1 Parent(s): d36cc65

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +9 -7
app.py CHANGED
@@ -13,17 +13,19 @@ model = tf.keras.Sequential([
13
  tf.keras.layers.Dense(units=1, input_shape=[1])
14
  ])
15
 
 
 
 
 
 
 
16
  # Compile the model with an optimizer and loss function
17
- model.compile(optimizer='sgd', loss='mse')
18
 
19
  # Training data (Celsius to Fahrenheit)
20
  celsius = np.array([-40, -10, 0, 8, 15, 22, 38], dtype=float) # Celsius
21
  fahrenheit = np.array([-40, 14, 32, 46.4, 59, 71.6, 100.4], dtype=float) # Corresponding Fahrenheit
22
 
23
- # Display example input and output
24
- st.write("Example Celsius values (input):", celsius)
25
- st.write("Corresponding Fahrenheit values (output):", fahrenheit)
26
-
27
  # User input for the Celsius value to predict Fahrenheit
28
  input_celsius = st.number_input('Enter Celsius value:', value=0.0, format="%.1f")
29
 
@@ -37,8 +39,8 @@ if st.button('Train Model and Predict Fahrenheit'):
37
  st.success('Training completed!')
38
 
39
  # Make prediction
40
- predicted_fahrenheit = model.predict([input_celsius])
41
- st.write(f'For input of {input_celsius}°C, the predicted Fahrenheit value is {predicted_fahrenheit[0][0]:.1f}°F')
42
 
43
  # Predictions for visualization
44
  predictions = model.predict(celsius)
 
13
  tf.keras.layers.Dense(units=1, input_shape=[1])
14
  ])
15
 
16
+ # Optimizer selection
17
+ optimizer = st.sidebar.selectbox(
18
+ "Select optimizer",
19
+ ('sgd', 'adam', 'rmsprop')
20
+ )
21
+
22
  # Compile the model with an optimizer and loss function
23
+ model.compile(optimizer=optimizer, loss='mse')
24
 
25
  # Training data (Celsius to Fahrenheit)
26
  celsius = np.array([-40, -10, 0, 8, 15, 22, 38], dtype=float) # Celsius
27
  fahrenheit = np.array([-40, 14, 32, 46.4, 59, 71.6, 100.4], dtype=float) # Corresponding Fahrenheit
28
 
 
 
 
 
29
  # User input for the Celsius value to predict Fahrenheit
30
  input_celsius = st.number_input('Enter Celsius value:', value=0.0, format="%.1f")
31
 
 
39
  st.success('Training completed!')
40
 
41
  # Make prediction
42
+ predicted_fahrenheit = model.predict([input_celsius])[0][0]
43
+ st.write(f'For input of {input_celsius}°C, the predicted Fahrenheit value is {predicted_fahrenheit:.1f}°F')
44
 
45
  # Predictions for visualization
46
  predictions = model.predict(celsius)