Blessin commited on
Commit
d69c975
·
verified ·
1 Parent(s): 19d54fa

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +6 -6
app.py CHANGED
@@ -8,17 +8,17 @@ import matplotlib.pyplot as plt
8
  # Streamlit UI
9
  st.title('Celsius to Fahrenheit Conversion with TensorFlow')
10
 
11
- # Define the model
12
  model = tf.keras.Sequential([
13
- tf.keras.layers.Dense(units=1, input_shape=[1])
14
  ])
15
 
16
  # Set a suitable learning rate and number of epochs
17
  learning_rate = 0.01
18
  epochs = 500
19
 
20
- # Compile the model with the selected optimizer and loss function
21
- optimizer = tf.keras.optimizers.SGD(learning_rate=learning_rate)
22
  model.compile(optimizer=optimizer, loss='mse')
23
 
24
  # Training data (Celsius to Fahrenheit)
@@ -31,8 +31,8 @@ input_celsius = st.number_input('Enter Celsius value:', value=0.0, format="%.1f"
31
  # Button to train the model and make prediction
32
  if st.button('Train Model and Predict Fahrenheit'):
33
  with st.spinner('Training...'):
34
- # Fit the model with hardcoded hyperparameters
35
- model.fit(celsius, fahrenheit, epochs=epochs)
36
  st.success('Training completed!')
37
 
38
  # Make prediction
 
8
  # Streamlit UI
9
  st.title('Celsius to Fahrenheit Conversion with TensorFlow')
10
 
11
+ # Define the model with a different weight initializer
12
  model = tf.keras.Sequential([
13
+ tf.keras.layers.Dense(units=1, input_shape=[1], kernel_initializer='he_normal')
14
  ])
15
 
16
  # Set a suitable learning rate and number of epochs
17
  learning_rate = 0.01
18
  epochs = 500
19
 
20
+ # Compile the model with the Adam optimizer and loss function
21
+ optimizer = tf.keras.optimizers.Adam(learning_rate=learning_rate)
22
  model.compile(optimizer=optimizer, loss='mse')
23
 
24
  # Training data (Celsius to Fahrenheit)
 
31
  # Button to train the model and make prediction
32
  if st.button('Train Model and Predict Fahrenheit'):
33
  with st.spinner('Training...'):
34
+ # Fit the model
35
+ model.fit(celsius, fahrenheit, epochs=epochs, batch_size=4)
36
  st.success('Training completed!')
37
 
38
  # Make prediction