Blessin commited on
Commit
e30d640
·
verified ·
1 Parent(s): 268ad97

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +7 -3
app.py CHANGED
@@ -5,6 +5,9 @@ import numpy as np
5
  import streamlit as st
6
  import matplotlib.pyplot as plt
7
 
 
 
 
8
  # Define the model
9
  model = tf.keras.Sequential([
10
  tf.keras.layers.Dense(units=1, input_shape=[1])
@@ -17,14 +20,15 @@ model.compile(optimizer='sgd', loss='mse')
17
  xs = np.array([1.0, 2.0, 3.0, 4.0, 5.0], dtype=float)
18
  ys = np.array([1.5, 2.0, 2.5, 3.0, 3.5], dtype=float)
19
 
20
- # Streamlit UI
21
- st.title('Simple Linear Regression with TensorFlow')
 
22
 
23
  # User input for the new value to predict
24
  input_value = st.number_input('Enter your input value:', value=1.0, format="%.1f")
25
 
26
  # User input for epochs
27
- epochs = st.sidebar.slider("Number of epochs", 10, 100, 10)
28
 
29
  # Button to train the model and make prediction
30
  if st.button('Train Model and Predict'):
 
5
  import streamlit as st
6
  import matplotlib.pyplot as plt
7
 
8
+ # Streamlit UI
9
+ st.title('Simple Linear Regression with TensorFlow')
10
+
11
  # Define the model
12
  model = tf.keras.Sequential([
13
  tf.keras.layers.Dense(units=1, input_shape=[1])
 
20
  xs = np.array([1.0, 2.0, 3.0, 4.0, 5.0], dtype=float)
21
  ys = np.array([1.5, 2.0, 2.5, 3.0, 3.5], dtype=float)
22
 
23
+ # Display example input and output
24
+ st.write("Example input (xs):", xs)
25
+ st.write("Example output (ys):", ys)
26
 
27
  # User input for the new value to predict
28
  input_value = st.number_input('Enter your input value:', value=1.0, format="%.1f")
29
 
30
  # User input for epochs
31
+ epochs = st.sidebar.slider("Number of epochs", 10, 500, 10)
32
 
33
  # Button to train the model and make prediction
34
  if st.button('Train Model and Predict'):