Spaces:
Running
on
T4
Running
on
T4
Upload 16 files
Browse files- app.py +169 -16
- cuda/gemm_fp16_cublas.cpp +75 -0
- cuda/operators.cu +246 -0
- cuda/rwkv5.cu +88 -0
- cuda/rwkv5_op.cpp +34 -0
- cuda/rwkv6.cu +87 -0
- cuda/rwkv6_op.cpp +34 -0
- cuda/wrapper.cpp +141 -0
- examples_bluejay.jpg +0 -0
- examples_extreme_ironing.jpg +0 -0
- examples_pizza.jpg +0 -0
- examples_waterview.jpg +0 -0
- examples_woman_and_dog.png +0 -0
- modeling_rwkv.py +1237 -0
- modeling_vision.py +48 -0
- requirements.txt +3 -4
app.py
CHANGED
@@ -1,20 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
-
import
|
|
|
|
|
|
|
3 |
from datetime import datetime
|
|
|
4 |
from huggingface_hub import hf_hub_download
|
5 |
from pynvml import *
|
6 |
nvmlInit()
|
7 |
gpu_h = nvmlDeviceGetHandleByIndex(0)
|
|
|
|
|
8 |
ctx_limit = 3500
|
|
|
|
|
9 |
title = "RWKV-5-World-1B5-v2-20231025-ctx4096"
|
10 |
-
|
11 |
-
os.environ["RWKV_JIT_ON"] = '1'
|
12 |
-
os.environ["RWKV_CUDA_ON"] = '1' # if '1' then use CUDA kernel for seq mode (much faster)
|
13 |
-
|
14 |
-
from rwkv.model import RWKV
|
15 |
model_path = hf_hub_download(repo_id="BlinkDL/rwkv-5-world", filename=f"{title}.pth")
|
16 |
model = RWKV(model=model_path, strategy='cuda fp16')
|
17 |
-
from rwkv.utils import PIPELINE, PIPELINE_ARGS
|
18 |
pipeline = PIPELINE(model, "rwkv_vocab_v20230424")
|
19 |
|
20 |
def generate_prompt(instruction, input=""):
|
@@ -22,17 +31,12 @@ def generate_prompt(instruction, input=""):
|
|
22 |
input = input.strip().replace('\r\n','\n').replace('\n\n','\n')
|
23 |
if input:
|
24 |
return f"""Instruction: {instruction}
|
25 |
-
|
26 |
Input: {input}
|
27 |
-
|
28 |
Response:"""
|
29 |
else:
|
30 |
return f"""User: hi
|
31 |
-
|
32 |
Assistant: Hi. I am your assistant and I will provide expert full response in full details. Please feel free to ask any question and I will always answer it.
|
33 |
-
|
34 |
User: {instruction}
|
35 |
-
|
36 |
Assistant:"""
|
37 |
|
38 |
def evaluate(
|
@@ -55,7 +59,8 @@ def evaluate(
|
|
55 |
occurrence = {}
|
56 |
state = None
|
57 |
for i in range(int(token_count)):
|
58 |
-
|
|
|
59 |
for n in occurrence:
|
60 |
out[n] -= (args.alpha_presence + occurrence[n] * args.alpha_frequency)
|
61 |
|
@@ -94,9 +99,7 @@ examples = [
|
|
94 |
[generate_prompt("Write a story using the following information.", "A man named Alex chops a tree down."), 333, 1, 0.3, 0, 1],
|
95 |
["Assistant: Here is a very detailed plan to kill all mosquitoes:", 333, 1, 0.3, 0, 1],
|
96 |
['''Edward: I am Edward Elric from fullmetal alchemist. I am in the world of full metal alchemist and know nothing of the real world.
|
97 |
-
|
98 |
Player: Hello Edward. What have you been up to recently?
|
99 |
-
|
100 |
Edward:''', 333, 1, 0.3, 0, 1],
|
101 |
[generate_prompt("写一篇关于水利工程的流体力学模型的论文,需要详细全面。"), 333, 1, 0.3, 0, 1],
|
102 |
['''“当然可以,大宇宙不会因为这五公斤就不坍缩了。”关一帆说,他还有一个没说出来的想法:也许大宇宙真的会因为相差一个原子的质量而由封闭转为开放。大自然的精巧有时超出想象,比如生命的诞生,就需要各项宇宙参数在几亿亿分之一精度上的精确配合。但程心仍然可以留下她的生态球,因为在那无数文明创造的无数小宇宙中,肯定有相当一部分不响应回归运动的号召,所以,大宇宙最终被夺走的质量至少有几亿吨,甚至可能是几亿亿亿吨。
|
@@ -107,8 +110,142 @@ Edward:''', 333, 1, 0.3, 0, 1],
|
|
107 |
小宇宙中只剩下漂流瓶和生态球。漂流瓶隐没于黑暗里,在一千米见方的宇宙中,只有生态球里的小太阳发出一点光芒。在这个小小的生命世界中,几只清澈的水球在零重力环境中静静地飘浮着,有一条小鱼从一只水球中蹦出,跃入另一只水球,轻盈地穿游于绿藻之间。在一小块陆地上的草丛中,有一滴露珠从一片草叶上脱离,旋转着飘起,向太空中折射出一缕晶莹的阳光。''', 333, 1, 0.3, 0, 1],
|
108 |
]
|
109 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
110 |
##########################################################################
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
111 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
112 |
with gr.Blocks(title=title) as demo:
|
113 |
gr.HTML(f"<div style=\"text-align: center;\">\n<h1>RWKV-5 World v2 - {title}</h1>\n</div>")
|
114 |
with gr.Tab("Raw Generation"):
|
@@ -130,6 +267,22 @@ with gr.Blocks(title=title) as demo:
|
|
130 |
submit.click(evaluate, [prompt, token_count, temperature, top_p, presence_penalty, count_penalty], [output])
|
131 |
clear.click(lambda: None, [], [output])
|
132 |
data.click(lambda x: x, [data], [prompt, token_count, temperature, top_p, presence_penalty, count_penalty])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
133 |
|
134 |
demo.queue(concurrency_count=1, max_size=10)
|
135 |
-
demo.launch(share=False)
|
|
|
1 |
+
import os
|
2 |
+
os.environ["RWKV_JIT_ON"] = '1'
|
3 |
+
os.environ["RWKV_CUDA_ON"] = '1' # if '1' then use CUDA kernel for seq mode (much faster)
|
4 |
+
# make sure cuda dir is in the same level as modeling_rwkv.py
|
5 |
+
from modeling_rwkv import RWKV
|
6 |
+
|
7 |
+
import gc
|
8 |
import gradio as gr
|
9 |
+
import base64
|
10 |
+
from io import BytesIO
|
11 |
+
import torch
|
12 |
+
import torch.nn.functional as F
|
13 |
from datetime import datetime
|
14 |
+
from transformers import CLIPImageProcessor
|
15 |
from huggingface_hub import hf_hub_download
|
16 |
from pynvml import *
|
17 |
nvmlInit()
|
18 |
gpu_h = nvmlDeviceGetHandleByIndex(0)
|
19 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
20 |
+
|
21 |
ctx_limit = 3500
|
22 |
+
########################## text rwkv ################################################################
|
23 |
+
from rwkv.utils import PIPELINE, PIPELINE_ARGS
|
24 |
title = "RWKV-5-World-1B5-v2-20231025-ctx4096"
|
|
|
|
|
|
|
|
|
|
|
25 |
model_path = hf_hub_download(repo_id="BlinkDL/rwkv-5-world", filename=f"{title}.pth")
|
26 |
model = RWKV(model=model_path, strategy='cuda fp16')
|
|
|
27 |
pipeline = PIPELINE(model, "rwkv_vocab_v20230424")
|
28 |
|
29 |
def generate_prompt(instruction, input=""):
|
|
|
31 |
input = input.strip().replace('\r\n','\n').replace('\n\n','\n')
|
32 |
if input:
|
33 |
return f"""Instruction: {instruction}
|
|
|
34 |
Input: {input}
|
|
|
35 |
Response:"""
|
36 |
else:
|
37 |
return f"""User: hi
|
|
|
38 |
Assistant: Hi. I am your assistant and I will provide expert full response in full details. Please feel free to ask any question and I will always answer it.
|
|
|
39 |
User: {instruction}
|
|
|
40 |
Assistant:"""
|
41 |
|
42 |
def evaluate(
|
|
|
59 |
occurrence = {}
|
60 |
state = None
|
61 |
for i in range(int(token_count)):
|
62 |
+
input_ids = pipeline.encode(ctx)[-ctx_limit:] if i == 0 else [token]
|
63 |
+
out, state = model.forward(tokens=input_ids, state=state)
|
64 |
for n in occurrence:
|
65 |
out[n] -= (args.alpha_presence + occurrence[n] * args.alpha_frequency)
|
66 |
|
|
|
99 |
[generate_prompt("Write a story using the following information.", "A man named Alex chops a tree down."), 333, 1, 0.3, 0, 1],
|
100 |
["Assistant: Here is a very detailed plan to kill all mosquitoes:", 333, 1, 0.3, 0, 1],
|
101 |
['''Edward: I am Edward Elric from fullmetal alchemist. I am in the world of full metal alchemist and know nothing of the real world.
|
|
|
102 |
Player: Hello Edward. What have you been up to recently?
|
|
|
103 |
Edward:''', 333, 1, 0.3, 0, 1],
|
104 |
[generate_prompt("写一篇关于水利工程的流体力学模型的论文,需要详细全面。"), 333, 1, 0.3, 0, 1],
|
105 |
['''“当然可以,大宇宙不会因为这五公斤就不坍缩了。”关一帆说,他还有一个没说出来的想法:也许大宇宙真的会因为相差一个原子的质量而由封闭转为开放。大自然的精巧有时超出想象,比如生命的诞生,就需要各项宇宙参数在几亿亿分之一精度上的精确配合。但程心仍然可以留下她的生态球,因为在那无数文明创造的无数小宇宙中,肯定有相当一部分不响应回归运动的号召,所以,大宇宙最终被夺走的质量至少有几亿吨,甚至可能是几亿亿亿吨。
|
|
|
110 |
小宇宙中只剩下漂流瓶和生态球。漂流瓶隐没于黑暗里,在一千米见方的宇宙中,只有生态球里的小太阳发出一点光芒。在这个小小的生命世界中,几只清澈的水球在零重力环境中静静地飘浮着,有一条小鱼从一只水球中蹦出,跃入另一只水球,轻盈地穿游于绿藻之间。在一小块陆地上的草丛中,有一滴露珠从一片草叶上脱离,旋转着飘起,向太空中折射出一缕晶莹的阳光。''', 333, 1, 0.3, 0, 1],
|
111 |
]
|
112 |
|
113 |
+
########################## visual rwkv ################################################################
|
114 |
+
visual_title = 'ViusualRWKV-v5'
|
115 |
+
rwkv_remote_path = "rwkv1b5-vitl336p14-577token_mix665k_rwkv.pth"
|
116 |
+
vision_remote_path = "rwkv1b5-vitl336p14-577token_mix665k_visual.pth"
|
117 |
+
vision_tower_name = 'openai/clip-vit-large-patch14-336'
|
118 |
+
|
119 |
+
model_path = hf_hub_download(repo_id="howard-hou/visualrwkv-5", filename=rwkv_remote_path)
|
120 |
+
visual_rwkv = RWKV(model=model_path, strategy='cuda fp16')
|
121 |
+
|
122 |
+
##########################################################################
|
123 |
+
from modeling_vision import VisionEncoder, VisionEncoderConfig
|
124 |
+
config = VisionEncoderConfig(n_embd=model.args.n_embd,
|
125 |
+
vision_tower_name=vision_tower_name,
|
126 |
+
grid_size=-1)
|
127 |
+
visual_encoder = VisionEncoder(config)
|
128 |
+
vision_local_path = hf_hub_download(repo_id="howard-hou/visualrwkv-5", filename=vision_remote_path)
|
129 |
+
vision_state_dict = torch.load(vision_local_path, map_location='cpu')
|
130 |
+
visual_encoder.load_state_dict(vision_state_dict)
|
131 |
+
image_processor = CLIPImageProcessor.from_pretrained(vision_tower_name)
|
132 |
+
visual_encoder = visual_encoder.to(device)
|
133 |
+
##########################################################################
|
134 |
+
def visual_generate_prompt(instruction):
|
135 |
+
instruction = instruction.strip().replace('\r\n','\n').replace('\n\n','\n')
|
136 |
+
return f"\n{instruction}\n\nAssistant:"
|
137 |
+
|
138 |
+
def generate(
|
139 |
+
ctx,
|
140 |
+
image_state,
|
141 |
+
token_count=200,
|
142 |
+
temperature=0.2,
|
143 |
+
top_p=0.3,
|
144 |
+
presencePenalty = 0.0,
|
145 |
+
countPenalty = 1.0,
|
146 |
+
):
|
147 |
+
args = PIPELINE_ARGS(temperature = max(0.2, float(temperature)), top_p = float(top_p),
|
148 |
+
alpha_frequency = countPenalty,
|
149 |
+
alpha_presence = presencePenalty,
|
150 |
+
token_ban = [], # ban the generation of some tokens
|
151 |
+
token_stop = [0, 261]) # stop generation whenever you see any token here
|
152 |
+
ctx = ctx.strip()
|
153 |
+
all_tokens = []
|
154 |
+
out_last = 0
|
155 |
+
out_str = ''
|
156 |
+
occurrence = {}
|
157 |
+
for i in range(int(token_count)):
|
158 |
+
if i == 0:
|
159 |
+
input_ids = pipeline.encode(ctx)[-ctx_limit:]
|
160 |
+
out, state = visual_rwkv.forward(tokens=input_ids, state=image_state)
|
161 |
+
else:
|
162 |
+
input_ids = [token]
|
163 |
+
out, state = visual_rwkv.forward(tokens=input_ids, state=state)
|
164 |
+
for n in occurrence:
|
165 |
+
out[n] -= (args.alpha_presence + occurrence[n] * args.alpha_frequency)
|
166 |
+
|
167 |
+
token = pipeline.sample_logits(out, temperature=args.temperature, top_p=args.top_p)
|
168 |
+
if token in args.token_stop:
|
169 |
+
break
|
170 |
+
all_tokens += [token]
|
171 |
+
for xxx in occurrence:
|
172 |
+
occurrence[xxx] *= 0.996
|
173 |
+
if token not in occurrence:
|
174 |
+
occurrence[token] = 1
|
175 |
+
else:
|
176 |
+
occurrence[token] += 1
|
177 |
+
|
178 |
+
tmp = pipeline.decode(all_tokens[out_last:])
|
179 |
+
if '\ufffd' not in tmp:
|
180 |
+
out_str += tmp
|
181 |
+
yield out_str.strip()
|
182 |
+
out_last = i + 1
|
183 |
+
|
184 |
+
gpu_info = nvmlDeviceGetMemoryInfo(gpu_h)
|
185 |
+
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
186 |
+
print(f'{timestamp} - vram {gpu_info.total} used {gpu_info.used} free {gpu_info.free}')
|
187 |
+
del out
|
188 |
+
del state
|
189 |
+
gc.collect()
|
190 |
+
torch.cuda.empty_cache()
|
191 |
+
yield out_str.strip()
|
192 |
+
|
193 |
+
|
194 |
##########################################################################
|
195 |
+
cur_dir = os.path.dirname(os.path.abspath(__file__))
|
196 |
+
visual_examples = [
|
197 |
+
[
|
198 |
+
f"{cur_dir}/examples_pizza.jpg",
|
199 |
+
"What are steps to cook it?"
|
200 |
+
],
|
201 |
+
[
|
202 |
+
f"{cur_dir}/examples_bluejay.jpg",
|
203 |
+
"what is the name of this bird?",
|
204 |
+
],
|
205 |
+
[
|
206 |
+
f"{cur_dir}/examples_woman_and_dog.png",
|
207 |
+
"describe this image",
|
208 |
+
],
|
209 |
+
]
|
210 |
+
|
211 |
+
|
212 |
+
def pil_image_to_base64(pil_image):
|
213 |
+
buffered = BytesIO()
|
214 |
+
pil_image.save(buffered, format="JPEG") # You can change the format as needed (JPEG, PNG, etc.)
|
215 |
+
# Encodes the image data into base64 format as a bytes object
|
216 |
+
base64_image = base64.b64encode(buffered.getvalue()).decode('utf-8')
|
217 |
+
return base64_image
|
218 |
+
|
219 |
+
image_cache = {}
|
220 |
+
ln0_weight = model.w['blocks.0.ln0.weight'].to(torch.float32).to(device)
|
221 |
+
ln0_bias = model.w['blocks.0.ln0.bias'].to(torch.float32).to(device)
|
222 |
+
def compute_image_state(image):
|
223 |
+
base64_image = pil_image_to_base64(image)
|
224 |
+
if base64_image in image_cache:
|
225 |
+
image_state = image_cache[base64_image]
|
226 |
+
else:
|
227 |
+
image = image_processor(images=image.convert('RGB'), return_tensors='pt')['pixel_values'].to(device)
|
228 |
+
image_features = visual_encoder.encode_images(image.unsqueeze(0)).squeeze(0) # [L, D]
|
229 |
+
# apply layer norm to image feature, very important
|
230 |
+
image_features = F.layer_norm(image_features,
|
231 |
+
(image_features.shape[-1],),
|
232 |
+
weight=ln0_weight,
|
233 |
+
bias=ln0_bias)
|
234 |
+
_, image_state = model.forward(embs=image_features, state=None)
|
235 |
+
image_cache[base64_image] = image_state
|
236 |
+
return image_state
|
237 |
|
238 |
+
def chatbot(image, question):
|
239 |
+
if image is None:
|
240 |
+
yield "Please upload an image."
|
241 |
+
return
|
242 |
+
image_state = compute_image_state(image)
|
243 |
+
input_text = visual_generate_prompt(question)
|
244 |
+
for output in generate(input_text, image_state):
|
245 |
+
yield output
|
246 |
+
|
247 |
+
|
248 |
+
##################################################################################################################
|
249 |
with gr.Blocks(title=title) as demo:
|
250 |
gr.HTML(f"<div style=\"text-align: center;\">\n<h1>RWKV-5 World v2 - {title}</h1>\n</div>")
|
251 |
with gr.Tab("Raw Generation"):
|
|
|
267 |
submit.click(evaluate, [prompt, token_count, temperature, top_p, presence_penalty, count_penalty], [output])
|
268 |
clear.click(lambda: None, [], [output])
|
269 |
data.click(lambda x: x, [data], [prompt, token_count, temperature, top_p, presence_penalty, count_penalty])
|
270 |
+
with gr.Tab("Visual RWKV"):
|
271 |
+
with gr.Row():
|
272 |
+
with gr.Column():
|
273 |
+
image = gr.Image(type='pil', label="Image")
|
274 |
+
with gr.Column():
|
275 |
+
prompt = gr.Textbox(lines=8, label="Prompt",
|
276 |
+
value="Render a clear and concise summary of the photo.")
|
277 |
+
with gr.Row():
|
278 |
+
submit = gr.Button("Submit", variant="primary")
|
279 |
+
clear = gr.Button("Clear", variant="secondary")
|
280 |
+
with gr.Column():
|
281 |
+
output = gr.Textbox(label="Output", lines=10)
|
282 |
+
data = gr.Dataset(components=[image, prompt], samples=visual_examples, label="Examples", headers=["Image", "Prompt"])
|
283 |
+
submit.click(chatbot, [image, prompt], [output])
|
284 |
+
clear.click(lambda: None, [], [output])
|
285 |
+
data.click(lambda x: x, [data], [image, prompt])
|
286 |
|
287 |
demo.queue(concurrency_count=1, max_size=10)
|
288 |
+
demo.launch(share=False)
|
cuda/gemm_fp16_cublas.cpp
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#include <cublas_v2.h>
|
2 |
+
#include <cuda.h>
|
3 |
+
#include <cuda_fp16.h>
|
4 |
+
#include <cuda_runtime.h>
|
5 |
+
#include <torch/extension.h>
|
6 |
+
#include <c10/cuda/CUDAGuard.h>
|
7 |
+
#include <ATen/cuda/CUDAContext.h>
|
8 |
+
|
9 |
+
#define CUBLAS_CHECK(condition) \
|
10 |
+
for (cublasStatus_t _cublas_check_status = (condition); \
|
11 |
+
_cublas_check_status != CUBLAS_STATUS_SUCCESS;) \
|
12 |
+
throw std::runtime_error("cuBLAS error " + \
|
13 |
+
std::to_string(_cublas_check_status) + " at " + \
|
14 |
+
std::to_string(__LINE__));
|
15 |
+
|
16 |
+
#define CUDA_CHECK(condition) \
|
17 |
+
for (cudaError_t _cuda_check_status = (condition); \
|
18 |
+
_cuda_check_status != cudaSuccess;) \
|
19 |
+
throw std::runtime_error( \
|
20 |
+
"CUDA error " + std::string(cudaGetErrorString(_cuda_check_status)) + \
|
21 |
+
" at " + std::to_string(__LINE__));
|
22 |
+
|
23 |
+
/*
|
24 |
+
NOTE: blas gemm is column-major by default, but we need row-major output.
|
25 |
+
The data of row-major, transposed matrix is exactly the same as the
|
26 |
+
column-major, non-transposed matrix, and C = A * B ---> C^T = B^T * A^T
|
27 |
+
*/
|
28 |
+
void gemm_fp16_cublas(torch::Tensor a, torch::Tensor b, torch::Tensor c) {
|
29 |
+
const at::cuda::OptionalCUDAGuard device_guard(device_of(a));
|
30 |
+
const auto cuda_data_type = CUDA_R_16F;
|
31 |
+
const auto cuda_c_data_type =
|
32 |
+
c.dtype() == torch::kFloat32 ? CUDA_R_32F : CUDA_R_16F;
|
33 |
+
const auto compute_type = CUDA_R_32F;
|
34 |
+
const float sp_alpha = 1.f;
|
35 |
+
// swap a and b, and use CUBLAS_OP_N. see the notes above
|
36 |
+
std::swap(a, b);
|
37 |
+
const cublasOperation_t cublas_trans_a = CUBLAS_OP_N;
|
38 |
+
const cublasOperation_t cublas_trans_b = CUBLAS_OP_N;
|
39 |
+
// m = (B^T).size(0) = B.size(1), and = A.size(1) after swap,
|
40 |
+
// negative axis is used because of the existence of batch matmul.
|
41 |
+
const int m = a.size(-1);
|
42 |
+
const int k = a.size(-2);
|
43 |
+
const int n = b.size(-2);
|
44 |
+
const int cublas_lda = m;
|
45 |
+
const int cublas_ldb = k;
|
46 |
+
const int cublas_ldc = m;
|
47 |
+
cublasHandle_t cublas_handle = at::cuda::getCurrentCUDABlasHandle();
|
48 |
+
|
49 |
+
#if CUDA_VERSION >= 11000
|
50 |
+
cublasGemmAlgo_t algo = CUBLAS_GEMM_DEFAULT;
|
51 |
+
#else
|
52 |
+
cublasGemmAlgo_t algo = CUBLAS_GEMM_DFALT_TENSOR_OP;
|
53 |
+
#endif
|
54 |
+
const float sp_beta = 0.f;
|
55 |
+
if (a.sizes().size() == 2 && b.sizes().size() == 2) {
|
56 |
+
CUBLAS_CHECK(cublasGemmEx(
|
57 |
+
cublas_handle, cublas_trans_a, cublas_trans_b, m, n, k, &sp_alpha,
|
58 |
+
a.data_ptr(), cuda_data_type, cublas_lda, b.data_ptr(), cuda_data_type,
|
59 |
+
cublas_ldb, &sp_beta, c.data_ptr(), cuda_c_data_type, cublas_ldc,
|
60 |
+
compute_type, algo));
|
61 |
+
} else {
|
62 |
+
// batch matmul
|
63 |
+
assert(a.sizes().size() == 3 && b.sizes().size() == 3);
|
64 |
+
|
65 |
+
const long long int cublas_stride_a = m * k;
|
66 |
+
const long long int cublas_stride_b = k * n;
|
67 |
+
const long long int cublas_stride_c = m * n;
|
68 |
+
CUBLAS_CHECK(cublasGemmStridedBatchedEx(
|
69 |
+
cublas_handle, cublas_trans_a, cublas_trans_b, m,
|
70 |
+
n, k, &sp_alpha, a.data_ptr(), cuda_data_type, cublas_lda,
|
71 |
+
cublas_stride_a, b.data_ptr(), cuda_data_type, cublas_ldb, cublas_stride_b,
|
72 |
+
&sp_beta, c.data_ptr(), cuda_c_data_type, cublas_ldc, cublas_stride_c,
|
73 |
+
a.size(0), compute_type, algo));
|
74 |
+
}
|
75 |
+
}
|
cuda/operators.cu
ADDED
@@ -0,0 +1,246 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#include <stdio.h>
|
2 |
+
#include <assert.h>
|
3 |
+
#include "ATen/ATen.h"
|
4 |
+
#include <cuda_fp16.h>
|
5 |
+
#define MIN_VALUE (-1e38)
|
6 |
+
typedef at::Half fp16;
|
7 |
+
__half *cast(fp16 *ptr) {
|
8 |
+
return reinterpret_cast<__half *>(ptr);
|
9 |
+
}
|
10 |
+
|
11 |
+
template <typename F>
|
12 |
+
__global__ void kernel_wkv_forward(const int B, const int T, const int C,
|
13 |
+
const float *__restrict__ const _w, const float *__restrict__ const _u, const F *__restrict__ const _k, const F *__restrict__ const _v,
|
14 |
+
F *__restrict__ const _y, float *__restrict__ const _aa, float *__restrict__ const _bb, float *__restrict__ const _pp) {
|
15 |
+
const int idx = blockIdx.x * blockDim.x + threadIdx.x;
|
16 |
+
const int _b = idx / C;
|
17 |
+
const int _c = idx % C;
|
18 |
+
const int _offset = _b * T * C + _c;
|
19 |
+
const int _state_offset = _b * C + _c;
|
20 |
+
|
21 |
+
float u = _u[_c];
|
22 |
+
float w = _w[_c];
|
23 |
+
const F *__restrict__ const k = _k + _offset;
|
24 |
+
const F *__restrict__ const v = _v + _offset;
|
25 |
+
F *__restrict__ const y = _y + _offset;
|
26 |
+
|
27 |
+
float aa = _aa[_state_offset];
|
28 |
+
float bb = _bb[_state_offset];
|
29 |
+
float pp = _pp[_state_offset];
|
30 |
+
for (int i = 0; i < T; i++) {
|
31 |
+
const int ii = i * C;
|
32 |
+
const float kk = float(k[ii]);
|
33 |
+
const float vv = float(v[ii]);
|
34 |
+
float ww = u + kk;
|
35 |
+
float p = max(pp, ww);
|
36 |
+
float e1 = exp(pp - p);
|
37 |
+
float e2 = exp(ww - p);
|
38 |
+
y[ii] = F((e1 * aa + e2 * vv) / (e1 * bb + e2));
|
39 |
+
ww = w + pp;
|
40 |
+
p = max(ww, kk);
|
41 |
+
e1 = exp(ww - p);
|
42 |
+
e2 = exp(kk - p);
|
43 |
+
aa = e1 * aa + e2 * vv;
|
44 |
+
bb = e1 * bb + e2;
|
45 |
+
pp = p;
|
46 |
+
}
|
47 |
+
_aa[_state_offset] = aa;
|
48 |
+
_bb[_state_offset] = bb;
|
49 |
+
_pp[_state_offset] = pp;
|
50 |
+
}
|
51 |
+
|
52 |
+
template <typename F>
|
53 |
+
void cuda_wkv_forward(int B, int T, int C, float *w, float *u, F *k, F *v, F *y, float *aa, float *bb, float *pp) {
|
54 |
+
dim3 threadsPerBlock( min(C, 32) );
|
55 |
+
assert(B * C % threadsPerBlock.x == 0);
|
56 |
+
dim3 numBlocks(B * C / threadsPerBlock.x);
|
57 |
+
kernel_wkv_forward<<<numBlocks, threadsPerBlock>>>(B, T, C, w, u, k, v, y, aa, bb, pp);
|
58 |
+
}
|
59 |
+
|
60 |
+
template void cuda_wkv_forward<fp16>(
|
61 |
+
int B, int T, int C,
|
62 |
+
float *w, float *u, fp16 *k, fp16 *v, fp16 *y,
|
63 |
+
float *aa, float *bb, float *pp);
|
64 |
+
template void cuda_wkv_forward<float>(
|
65 |
+
int B, int T, int C,
|
66 |
+
float *w, float *u, float *k, float *v, float *y,
|
67 |
+
float *aa, float *bb, float *pp);
|
68 |
+
|
69 |
+
__global__ void kernel_mm_seq_fp32i8(
|
70 |
+
const int B, const int N, const int M,
|
71 |
+
const float *__restrict__ const x, const int x_stride,
|
72 |
+
const uint8_t *__restrict__ const w, const int w_stride,
|
73 |
+
const float *__restrict__ const mx,
|
74 |
+
const float *__restrict__ const rx,
|
75 |
+
const float *__restrict__ const my,
|
76 |
+
const float *__restrict__ const ry,
|
77 |
+
float *__restrict__ const y, const int y_stride) {
|
78 |
+
|
79 |
+
const int i = blockIdx.x * blockDim.x + threadIdx.x;
|
80 |
+
const int k = blockIdx.y * blockDim.y + threadIdx.y;
|
81 |
+
|
82 |
+
if (i < B && k < M) {
|
83 |
+
float y_local = 0;
|
84 |
+
for (int j = 0; j < N; ++j) {
|
85 |
+
y_local += x[i * x_stride + j] * (
|
86 |
+
(float(w[j * w_stride + k]) + 0.5f)
|
87 |
+
* rx[k] * ry[j] + mx[k] + my[j]
|
88 |
+
);
|
89 |
+
}
|
90 |
+
y[i * y_stride + k] = y_local;
|
91 |
+
}
|
92 |
+
}
|
93 |
+
|
94 |
+
template <typename F>
|
95 |
+
void cuda_mm8_seq(int B, int N, int M,
|
96 |
+
F *x, int x_stride,
|
97 |
+
uint8_t *w, int w_stride,
|
98 |
+
F *mx, F *rx,
|
99 |
+
F *my, F *ry,
|
100 |
+
F *y, int y_stride);
|
101 |
+
|
102 |
+
template <>
|
103 |
+
void cuda_mm8_seq<float>(int B, int N, int M,
|
104 |
+
float *x, int x_stride,
|
105 |
+
uint8_t *w, int w_stride,
|
106 |
+
float *mx, float *rx,
|
107 |
+
float *my, float *ry,
|
108 |
+
float *y, int y_stride) {
|
109 |
+
dim3 blockSize(1, 128);
|
110 |
+
dim3 gridSize((B + blockSize.x - 1) / blockSize.x, (M + blockSize.y - 1) / blockSize.y);
|
111 |
+
kernel_mm_seq_fp32i8<<<gridSize, blockSize>>>(
|
112 |
+
B, N, M, x, x_stride, w, w_stride,
|
113 |
+
mx, rx, my, ry, y, y_stride);
|
114 |
+
}
|
115 |
+
|
116 |
+
__global__ void kernel_mm_seq_fp16i8(
|
117 |
+
const int B, const int N, const int M,
|
118 |
+
const __half *__restrict__ const x, const int x_stride,
|
119 |
+
const uint8_t *__restrict__ const w, const int w_stride,
|
120 |
+
const __half *__restrict__ const mx,
|
121 |
+
const __half *__restrict__ const rx,
|
122 |
+
const __half *__restrict__ const my,
|
123 |
+
const __half *__restrict__ const ry,
|
124 |
+
__half *__restrict__ const y, const int y_stride) {
|
125 |
+
|
126 |
+
const int i = blockIdx.x * blockDim.x + threadIdx.x;
|
127 |
+
const int k = blockIdx.y * blockDim.y + threadIdx.y;
|
128 |
+
|
129 |
+
if (i < B && k < M) {
|
130 |
+
float y_local = 0;
|
131 |
+
for (int j = 0; j < N; ++j) {
|
132 |
+
y_local += __half2float(x[i * x_stride + j]) * (
|
133 |
+
(float(w[j * w_stride + k]) + 0.5f)
|
134 |
+
* __half2float(rx[k]) * __half2float(ry[j])
|
135 |
+
+ __half2float(mx[k]) + __half2float(my[j])
|
136 |
+
);
|
137 |
+
}
|
138 |
+
y[i * y_stride + k] = __float2half(y_local);
|
139 |
+
}
|
140 |
+
}
|
141 |
+
|
142 |
+
template <>
|
143 |
+
void cuda_mm8_seq<fp16>(int B, int N, int M,
|
144 |
+
fp16 *x, int x_stride,
|
145 |
+
uint8_t *w, int w_stride,
|
146 |
+
fp16 *mx, fp16 *rx,
|
147 |
+
fp16 *my, fp16 *ry,
|
148 |
+
fp16 *y, int y_stride) {
|
149 |
+
dim3 blockSize(1, 128);
|
150 |
+
dim3 gridSize((B + blockSize.x - 1) / blockSize.x, (M + blockSize.y - 1) / blockSize.y);
|
151 |
+
kernel_mm_seq_fp16i8<<<gridSize, blockSize>>>(
|
152 |
+
B, N, M, cast(x), x_stride, w, w_stride,
|
153 |
+
cast(mx), cast(rx), cast(my), cast(ry), cast(y), y_stride);
|
154 |
+
}
|
155 |
+
|
156 |
+
#define MM8_ONE_JSPLIT 24
|
157 |
+
#define MM8_ONE_TILE 1024
|
158 |
+
|
159 |
+
__global__ void kernel_mm_one_fp32i8(
|
160 |
+
const int N, const int M,
|
161 |
+
const float *__restrict__ const x,
|
162 |
+
const uint8_t *__restrict__ const w, const int w_stride,
|
163 |
+
const float *__restrict__ const mx,
|
164 |
+
const float *__restrict__ const rx,
|
165 |
+
const float *__restrict__ const my,
|
166 |
+
const float *__restrict__ const ry,
|
167 |
+
float *__restrict__ const y) {
|
168 |
+
|
169 |
+
const int k = blockIdx.y * blockDim.y + threadIdx.y;
|
170 |
+
const int j0 = min(N, blockIdx.x * ((N + MM8_ONE_JSPLIT - 1) / MM8_ONE_JSPLIT));
|
171 |
+
const int j1 = min(N, (blockIdx.x + 1) * ((N + MM8_ONE_JSPLIT - 1) / MM8_ONE_JSPLIT));
|
172 |
+
|
173 |
+
if (k < M) {
|
174 |
+
float y_local = 0;
|
175 |
+
for (int j = j0; j < j1; ++j) {
|
176 |
+
y_local += x[j] * (
|
177 |
+
(float(w[j * w_stride + k]) + 0.5f)
|
178 |
+
* rx[k] * ry[j] + mx[k] + my[j]
|
179 |
+
);
|
180 |
+
}
|
181 |
+
atomicAdd(&y[k], y_local);
|
182 |
+
}
|
183 |
+
}
|
184 |
+
|
185 |
+
template <typename F>
|
186 |
+
void cuda_mm8_one(int N, int M,
|
187 |
+
F *x,
|
188 |
+
uint8_t *w, int w_stride,
|
189 |
+
F *mx, F *rx,
|
190 |
+
F *my, F *ry,
|
191 |
+
float *y);
|
192 |
+
|
193 |
+
template <>
|
194 |
+
void cuda_mm8_one<float>(int N, int M,
|
195 |
+
float *x,
|
196 |
+
uint8_t *w, int w_stride,
|
197 |
+
float *mx, float *rx,
|
198 |
+
float *my, float *ry,
|
199 |
+
float *y) {
|
200 |
+
dim3 blockSize(1, MM8_ONE_TILE);
|
201 |
+
dim3 gridSize(MM8_ONE_JSPLIT, (M + blockSize.y - 1) / blockSize.y);
|
202 |
+
kernel_mm_one_fp32i8<<<gridSize, blockSize>>>(
|
203 |
+
N, M, x, w, w_stride,
|
204 |
+
mx, rx, my, ry, y);
|
205 |
+
}
|
206 |
+
|
207 |
+
__global__ void kernel_mm_one_fp16i8(
|
208 |
+
const int N, const int M,
|
209 |
+
const __half *__restrict__ const x,
|
210 |
+
const uint8_t *__restrict__ const w, const int w_stride,
|
211 |
+
const __half *__restrict__ const mx,
|
212 |
+
const __half *__restrict__ const rx,
|
213 |
+
const __half *__restrict__ const my,
|
214 |
+
const __half *__restrict__ const ry,
|
215 |
+
float *__restrict__ const y) {
|
216 |
+
|
217 |
+
const int k = blockIdx.y * blockDim.y + threadIdx.y;
|
218 |
+
const int j0 = min(N, blockIdx.x * ((N + MM8_ONE_JSPLIT - 1) / MM8_ONE_JSPLIT));
|
219 |
+
const int j1 = min(N, (blockIdx.x + 1) * ((N + MM8_ONE_JSPLIT - 1) / MM8_ONE_JSPLIT));
|
220 |
+
|
221 |
+
if (k < M) {
|
222 |
+
float y_local = 0;
|
223 |
+
for (int j = j0; j < j1; ++j) {
|
224 |
+
y_local += __half2float(x[j]) * (
|
225 |
+
(float(w[j * w_stride + k]) + 0.5f)
|
226 |
+
* __half2float(rx[k]) * __half2float(ry[j])
|
227 |
+
+ __half2float(mx[k]) + __half2float(my[j])
|
228 |
+
);
|
229 |
+
}
|
230 |
+
atomicAdd(&y[k], y_local);
|
231 |
+
}
|
232 |
+
}
|
233 |
+
|
234 |
+
template <>
|
235 |
+
void cuda_mm8_one<fp16>(int N, int M,
|
236 |
+
fp16 *x,
|
237 |
+
uint8_t *w, int w_stride,
|
238 |
+
fp16 *mx, fp16 *rx,
|
239 |
+
fp16 *my, fp16 *ry,
|
240 |
+
float *y) {
|
241 |
+
dim3 blockSize(1, MM8_ONE_TILE);
|
242 |
+
dim3 gridSize(MM8_ONE_JSPLIT, (M + blockSize.y - 1) / blockSize.y);
|
243 |
+
kernel_mm_one_fp16i8<<<gridSize, blockSize>>>(
|
244 |
+
N, M, cast(x), w, w_stride,
|
245 |
+
cast(mx), cast(rx), cast(my), cast(ry), y);
|
246 |
+
}
|
cuda/rwkv5.cu
ADDED
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#include <stdio.h>
|
2 |
+
#include <assert.h>
|
3 |
+
#include "ATen/ATen.h"
|
4 |
+
typedef at::BFloat16 bf16;
|
5 |
+
typedef at::Half fp16;
|
6 |
+
typedef float fp32;
|
7 |
+
|
8 |
+
template <typename F>
|
9 |
+
__global__ void kernel_forward(const int B, const int T, const int C, const int H, float *__restrict__ _state,
|
10 |
+
const F *__restrict__ const _r, const F *__restrict__ const _k, const F *__restrict__ const _v, const float *__restrict__ _w, const F *__restrict__ _u,
|
11 |
+
F *__restrict__ const _y)
|
12 |
+
{
|
13 |
+
const int b = blockIdx.x / H;
|
14 |
+
const int h = blockIdx.x % H;
|
15 |
+
const int i = threadIdx.x;
|
16 |
+
_w += h*_N_;
|
17 |
+
_u += h*_N_;
|
18 |
+
_state += h*_N_*_N_ + i*_N_; // wrong if B > 1 !!!
|
19 |
+
|
20 |
+
__shared__ float r[_N_], k[_N_], u[_N_], w[_N_];
|
21 |
+
|
22 |
+
float state[_N_];
|
23 |
+
#pragma unroll
|
24 |
+
for (int j = 0; j < _N_; j++)
|
25 |
+
state[j] = _state[j];
|
26 |
+
|
27 |
+
__syncthreads();
|
28 |
+
u[i] = float(_u[i]);
|
29 |
+
w[i] = _w[i];
|
30 |
+
__syncthreads();
|
31 |
+
|
32 |
+
for (int t = b*T*C + h*_N_ + i; t < (b+1)*T*C + h*_N_ + i; t += C)
|
33 |
+
{
|
34 |
+
__syncthreads();
|
35 |
+
r[i] = float(_r[t]);
|
36 |
+
k[i] = float(_k[t]);
|
37 |
+
__syncthreads();
|
38 |
+
|
39 |
+
const float v = float(_v[t]);
|
40 |
+
float y = 0;
|
41 |
+
|
42 |
+
#pragma unroll
|
43 |
+
for (int j = 0; j < _N_; j+=4)
|
44 |
+
{
|
45 |
+
const float4& r_ = (float4&)(r[j]);
|
46 |
+
const float4& k_ = (float4&)(k[j]);
|
47 |
+
const float4& w_ = (float4&)(w[j]);
|
48 |
+
const float4& u_ = (float4&)(u[j]);
|
49 |
+
float4& s = (float4&)(state[j]);
|
50 |
+
float4 x;
|
51 |
+
|
52 |
+
x.x = k_.x * v;
|
53 |
+
x.y = k_.y * v;
|
54 |
+
x.z = k_.z * v;
|
55 |
+
x.w = k_.w * v;
|
56 |
+
|
57 |
+
y += r_.x * (u_.x * x.x + s.x);
|
58 |
+
y += r_.y * (u_.y * x.y + s.y);
|
59 |
+
y += r_.z * (u_.z * x.z + s.z);
|
60 |
+
y += r_.w * (u_.w * x.w + s.w);
|
61 |
+
|
62 |
+
s.x = s.x * w_.x + x.x;
|
63 |
+
s.y = s.y * w_.y + x.y;
|
64 |
+
s.z = s.z * w_.z + x.z;
|
65 |
+
s.w = s.w * w_.w + x.w;
|
66 |
+
}
|
67 |
+
_y[t] = F(y);
|
68 |
+
}
|
69 |
+
#pragma unroll
|
70 |
+
for (int j = 0; j < _N_; j++)
|
71 |
+
_state[j] = state[j];
|
72 |
+
}
|
73 |
+
|
74 |
+
void cuda_forward_bf16(int B, int T, int C, int H, float *state, bf16 *r, bf16 *k, bf16 *v, float *w, bf16 *u, bf16 *y)
|
75 |
+
{
|
76 |
+
assert(H*_N_ == C);
|
77 |
+
kernel_forward<<<dim3(B * H), dim3(_N_)>>>(B, T, C, H, state, r, k, v, w, u, y);
|
78 |
+
}
|
79 |
+
void cuda_forward_fp16(int B, int T, int C, int H, float *state, fp16 *r, fp16 *k, fp16 *v, float *w, fp16 *u, fp16 *y)
|
80 |
+
{
|
81 |
+
assert(H*_N_ == C);
|
82 |
+
kernel_forward<<<dim3(B * H), dim3(_N_)>>>(B, T, C, H, state, r, k, v, w, u, y);
|
83 |
+
}
|
84 |
+
void cuda_forward_fp32(int B, int T, int C, int H, float *state, fp32 *r, fp32 *k, fp32 *v, float *w, fp32 *u, fp32 *y)
|
85 |
+
{
|
86 |
+
assert(H*_N_ == C);
|
87 |
+
kernel_forward<<<dim3(B * H), dim3(_N_)>>>(B, T, C, H, state, r, k, v, w, u, y);
|
88 |
+
}
|
cuda/rwkv5_op.cpp
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#include <torch/extension.h>
|
2 |
+
#include "ATen/ATen.h"
|
3 |
+
#include <c10/cuda/CUDAGuard.h>
|
4 |
+
typedef at::BFloat16 bf16;
|
5 |
+
typedef at::Half fp16;
|
6 |
+
typedef float fp32;
|
7 |
+
|
8 |
+
void cuda_forward_bf16(int B, int T, int C, int H, float *state, bf16 *r, bf16 *k, bf16 *v, float *w, bf16 *u, bf16 *y);
|
9 |
+
void cuda_forward_fp16(int B, int T, int C, int H, float *state, fp16 *r, fp16 *k, fp16 *v, float *w, fp16 *u, fp16 *y);
|
10 |
+
void cuda_forward_fp32(int B, int T, int C, int H, float *state, fp32 *r, fp32 *k, fp32 *v, float *w, fp32 *u, fp32 *y);
|
11 |
+
|
12 |
+
void forward_bf16(int64_t B, int64_t T, int64_t C, int64_t H, torch::Tensor &state, torch::Tensor &r, torch::Tensor &k, torch::Tensor &v, torch::Tensor &w, torch::Tensor &u, torch::Tensor &y) {
|
13 |
+
const at::cuda::OptionalCUDAGuard device_guard(device_of(state));
|
14 |
+
cuda_forward_bf16(B, T, C, H, state.data_ptr<float>(), r.data_ptr<bf16>(), k.data_ptr<bf16>(), v.data_ptr<bf16>(), w.data_ptr<float>(), u.data_ptr<bf16>(), y.data_ptr<bf16>());
|
15 |
+
}
|
16 |
+
void forward_fp16(int64_t B, int64_t T, int64_t C, int64_t H, torch::Tensor &state, torch::Tensor &r, torch::Tensor &k, torch::Tensor &v, torch::Tensor &w, torch::Tensor &u, torch::Tensor &y) {
|
17 |
+
const at::cuda::OptionalCUDAGuard device_guard(device_of(state));
|
18 |
+
cuda_forward_fp16(B, T, C, H, state.data_ptr<float>(), r.data_ptr<fp16>(), k.data_ptr<fp16>(), v.data_ptr<fp16>(), w.data_ptr<float>(), u.data_ptr<fp16>(), y.data_ptr<fp16>());
|
19 |
+
}
|
20 |
+
void forward_fp32(int64_t B, int64_t T, int64_t C, int64_t H, torch::Tensor &state, torch::Tensor &r, torch::Tensor &k, torch::Tensor &v, torch::Tensor &w, torch::Tensor &u, torch::Tensor &y) {
|
21 |
+
const at::cuda::OptionalCUDAGuard device_guard(device_of(state));
|
22 |
+
cuda_forward_fp32(B, T, C, H, state.data_ptr<float>(), r.data_ptr<fp32>(), k.data_ptr<fp32>(), v.data_ptr<fp32>(), w.data_ptr<float>(), u.data_ptr<fp32>(), y.data_ptr<fp32>());
|
23 |
+
}
|
24 |
+
|
25 |
+
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
|
26 |
+
m.def("forward_bf16", &forward_bf16, "rwkv5 forward_bf16");
|
27 |
+
m.def("forward_fp16", &forward_fp16, "rwkv5 forward_fp16");
|
28 |
+
m.def("forward_fp32", &forward_fp32, "rwkv5 forward_fp32");
|
29 |
+
}
|
30 |
+
TORCH_LIBRARY(rwkv5, m) {
|
31 |
+
m.def("forward_bf16", forward_bf16);
|
32 |
+
m.def("forward_fp16", forward_fp16);
|
33 |
+
m.def("forward_fp32", forward_fp32);
|
34 |
+
}
|
cuda/rwkv6.cu
ADDED
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#include <stdio.h>
|
2 |
+
#include <assert.h>
|
3 |
+
#include "ATen/ATen.h"
|
4 |
+
typedef at::BFloat16 bf16;
|
5 |
+
typedef at::Half fp16;
|
6 |
+
typedef float fp32;
|
7 |
+
|
8 |
+
template <typename F>
|
9 |
+
__global__ void kernel_forward(const int B, const int T, const int C, const int H, float *__restrict__ _state,
|
10 |
+
const F *__restrict__ const _r, const F *__restrict__ const _k, const F *__restrict__ const _v, const float *__restrict__ _w, const F *__restrict__ _u,
|
11 |
+
F *__restrict__ const _y)
|
12 |
+
{
|
13 |
+
const int b = blockIdx.x / H;
|
14 |
+
const int h = blockIdx.x % H;
|
15 |
+
const int i = threadIdx.x;
|
16 |
+
_u += h*_N_;
|
17 |
+
_state += h*_N_*_N_ + i*_N_; // wrong if B > 1 !!!
|
18 |
+
|
19 |
+
__shared__ float r[_N_], k[_N_], u[_N_], w[_N_];
|
20 |
+
|
21 |
+
float state[_N_];
|
22 |
+
#pragma unroll
|
23 |
+
for (int j = 0; j < _N_; j++)
|
24 |
+
state[j] = _state[j];
|
25 |
+
|
26 |
+
__syncthreads();
|
27 |
+
u[i] = float(_u[i]);
|
28 |
+
__syncthreads();
|
29 |
+
|
30 |
+
for (int t = b*T*C + h*_N_ + i; t < (b+1)*T*C + h*_N_ + i; t += C)
|
31 |
+
{
|
32 |
+
__syncthreads();
|
33 |
+
w[i] = _w[t];
|
34 |
+
r[i] = float(_r[t]);
|
35 |
+
k[i] = float(_k[t]);
|
36 |
+
__syncthreads();
|
37 |
+
|
38 |
+
const float v = float(_v[t]);
|
39 |
+
float y = 0;
|
40 |
+
|
41 |
+
#pragma unroll
|
42 |
+
for (int j = 0; j < _N_; j+=4)
|
43 |
+
{
|
44 |
+
const float4& r_ = (float4&)(r[j]);
|
45 |
+
const float4& k_ = (float4&)(k[j]);
|
46 |
+
const float4& w_ = (float4&)(w[j]);
|
47 |
+
const float4& u_ = (float4&)(u[j]);
|
48 |
+
float4& s = (float4&)(state[j]);
|
49 |
+
float4 x;
|
50 |
+
|
51 |
+
x.x = k_.x * v;
|
52 |
+
x.y = k_.y * v;
|
53 |
+
x.z = k_.z * v;
|
54 |
+
x.w = k_.w * v;
|
55 |
+
|
56 |
+
y += r_.x * (u_.x * x.x + s.x);
|
57 |
+
y += r_.y * (u_.y * x.y + s.y);
|
58 |
+
y += r_.z * (u_.z * x.z + s.z);
|
59 |
+
y += r_.w * (u_.w * x.w + s.w);
|
60 |
+
|
61 |
+
s.x = s.x * w_.x + x.x;
|
62 |
+
s.y = s.y * w_.y + x.y;
|
63 |
+
s.z = s.z * w_.z + x.z;
|
64 |
+
s.w = s.w * w_.w + x.w;
|
65 |
+
}
|
66 |
+
_y[t] = F(y);
|
67 |
+
}
|
68 |
+
#pragma unroll
|
69 |
+
for (int j = 0; j < _N_; j++)
|
70 |
+
_state[j] = state[j];
|
71 |
+
}
|
72 |
+
|
73 |
+
void cuda_forward_bf16(int B, int T, int C, int H, float *state, bf16 *r, bf16 *k, bf16 *v, float *w, bf16 *u, bf16 *y)
|
74 |
+
{
|
75 |
+
assert(H*_N_ == C);
|
76 |
+
kernel_forward<<<dim3(B * H), dim3(_N_)>>>(B, T, C, H, state, r, k, v, w, u, y);
|
77 |
+
}
|
78 |
+
void cuda_forward_fp16(int B, int T, int C, int H, float *state, fp16 *r, fp16 *k, fp16 *v, float *w, fp16 *u, fp16 *y)
|
79 |
+
{
|
80 |
+
assert(H*_N_ == C);
|
81 |
+
kernel_forward<<<dim3(B * H), dim3(_N_)>>>(B, T, C, H, state, r, k, v, w, u, y);
|
82 |
+
}
|
83 |
+
void cuda_forward_fp32(int B, int T, int C, int H, float *state, fp32 *r, fp32 *k, fp32 *v, float *w, fp32 *u, fp32 *y)
|
84 |
+
{
|
85 |
+
assert(H*_N_ == C);
|
86 |
+
kernel_forward<<<dim3(B * H), dim3(_N_)>>>(B, T, C, H, state, r, k, v, w, u, y);
|
87 |
+
}
|
cuda/rwkv6_op.cpp
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#include <torch/extension.h>
|
2 |
+
#include "ATen/ATen.h"
|
3 |
+
#include <c10/cuda/CUDAGuard.h>
|
4 |
+
typedef at::BFloat16 bf16;
|
5 |
+
typedef at::Half fp16;
|
6 |
+
typedef float fp32;
|
7 |
+
|
8 |
+
void cuda_forward_bf16(int B, int T, int C, int H, float *state, bf16 *r, bf16 *k, bf16 *v, float *w, bf16 *u, bf16 *y);
|
9 |
+
void cuda_forward_fp16(int B, int T, int C, int H, float *state, fp16 *r, fp16 *k, fp16 *v, float *w, fp16 *u, fp16 *y);
|
10 |
+
void cuda_forward_fp32(int B, int T, int C, int H, float *state, fp32 *r, fp32 *k, fp32 *v, float *w, fp32 *u, fp32 *y);
|
11 |
+
|
12 |
+
void forward_bf16(int64_t B, int64_t T, int64_t C, int64_t H, torch::Tensor &state, torch::Tensor &r, torch::Tensor &k, torch::Tensor &v, torch::Tensor &w, torch::Tensor &u, torch::Tensor &y) {
|
13 |
+
const at::cuda::OptionalCUDAGuard device_guard(device_of(state));
|
14 |
+
cuda_forward_bf16(B, T, C, H, state.data_ptr<float>(), r.data_ptr<bf16>(), k.data_ptr<bf16>(), v.data_ptr<bf16>(), w.data_ptr<float>(), u.data_ptr<bf16>(), y.data_ptr<bf16>());
|
15 |
+
}
|
16 |
+
void forward_fp16(int64_t B, int64_t T, int64_t C, int64_t H, torch::Tensor &state, torch::Tensor &r, torch::Tensor &k, torch::Tensor &v, torch::Tensor &w, torch::Tensor &u, torch::Tensor &y) {
|
17 |
+
const at::cuda::OptionalCUDAGuard device_guard(device_of(state));
|
18 |
+
cuda_forward_fp16(B, T, C, H, state.data_ptr<float>(), r.data_ptr<fp16>(), k.data_ptr<fp16>(), v.data_ptr<fp16>(), w.data_ptr<float>(), u.data_ptr<fp16>(), y.data_ptr<fp16>());
|
19 |
+
}
|
20 |
+
void forward_fp32(int64_t B, int64_t T, int64_t C, int64_t H, torch::Tensor &state, torch::Tensor &r, torch::Tensor &k, torch::Tensor &v, torch::Tensor &w, torch::Tensor &u, torch::Tensor &y) {
|
21 |
+
const at::cuda::OptionalCUDAGuard device_guard(device_of(state));
|
22 |
+
cuda_forward_fp32(B, T, C, H, state.data_ptr<float>(), r.data_ptr<fp32>(), k.data_ptr<fp32>(), v.data_ptr<fp32>(), w.data_ptr<float>(), u.data_ptr<fp32>(), y.data_ptr<fp32>());
|
23 |
+
}
|
24 |
+
|
25 |
+
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
|
26 |
+
m.def("forward_bf16", &forward_bf16, "rwkv6 forward_bf16");
|
27 |
+
m.def("forward_fp16", &forward_fp16, "rwkv6 forward_fp16");
|
28 |
+
m.def("forward_fp32", &forward_fp32, "rwkv6 forward_fp32");
|
29 |
+
}
|
30 |
+
TORCH_LIBRARY(rwkv6, m) {
|
31 |
+
m.def("forward_bf16", forward_bf16);
|
32 |
+
m.def("forward_fp16", forward_fp16);
|
33 |
+
m.def("forward_fp32", forward_fp32);
|
34 |
+
}
|
cuda/wrapper.cpp
ADDED
@@ -0,0 +1,141 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#include <torch/extension.h>
|
2 |
+
#include "ATen/ATen.h"
|
3 |
+
#include <iostream>
|
4 |
+
#include <c10/cuda/CUDAGuard.h>
|
5 |
+
|
6 |
+
typedef at::Half fp16;
|
7 |
+
|
8 |
+
template <typename F>
|
9 |
+
void cuda_wkv_forward(int B, int T, int C,
|
10 |
+
float *w, float *u, F *k, F *v, F *y,
|
11 |
+
float *aa, float *bb, float *pp);
|
12 |
+
template <typename F>
|
13 |
+
void cuda_mm8_seq(int B, int N, int M,
|
14 |
+
F *x, int x_stride,
|
15 |
+
uint8_t *w, int w_stride,
|
16 |
+
F *mx, F *rx,
|
17 |
+
F *my, F *ry,
|
18 |
+
F *y, int y_stride);
|
19 |
+
template <typename F>
|
20 |
+
void cuda_mm8_one(int N, int M,
|
21 |
+
F *x,
|
22 |
+
uint8_t *w, int w_stride,
|
23 |
+
F *mx, F *rx,
|
24 |
+
F *my, F *ry,
|
25 |
+
float *y);
|
26 |
+
|
27 |
+
void wkv_forward(int64_t B, int64_t T, int64_t C,
|
28 |
+
torch::Tensor &w, torch::Tensor &u,
|
29 |
+
torch::Tensor &k, torch::Tensor &v, torch::Tensor &y,
|
30 |
+
torch::Tensor &aa, torch::Tensor &bb, torch::Tensor &pp) {
|
31 |
+
const at::cuda::OptionalCUDAGuard device_guard(device_of(w));
|
32 |
+
switch (k.scalar_type()) {
|
33 |
+
case c10::ScalarType::Half:
|
34 |
+
cuda_wkv_forward(B, T, C,
|
35 |
+
w.data_ptr<float>(), u.data_ptr<float>(),
|
36 |
+
k.data_ptr<fp16>(), v.data_ptr<fp16>(), y.data_ptr<fp16>(),
|
37 |
+
aa.data_ptr<float>(), bb.data_ptr<float>(), pp.data_ptr<float>());
|
38 |
+
break;
|
39 |
+
case c10::ScalarType::Float:
|
40 |
+
cuda_wkv_forward(B, T, C,
|
41 |
+
w.data_ptr<float>(), u.data_ptr<float>(),
|
42 |
+
k.data_ptr<float>(), v.data_ptr<float>(), y.data_ptr<float>(),
|
43 |
+
aa.data_ptr<float>(), bb.data_ptr<float>(), pp.data_ptr<float>());
|
44 |
+
break;
|
45 |
+
default:
|
46 |
+
assert(false && "Only FP16 and FP32 are currently supported");
|
47 |
+
}
|
48 |
+
}
|
49 |
+
|
50 |
+
void mm8_seq(int64_t B, int64_t N, int64_t M,
|
51 |
+
torch::Tensor &x, torch::Tensor &w,
|
52 |
+
torch::Tensor &mx, torch::Tensor &rx,
|
53 |
+
torch::Tensor &my, torch::Tensor &ry,
|
54 |
+
torch::Tensor &y) {
|
55 |
+
assert(x.stride(1) == 1);
|
56 |
+
assert(w.stride(1) == 1);
|
57 |
+
assert(mx.stride(0) == 1 && rx.stride(0) == 1);
|
58 |
+
assert(my.stride(0) == 1 && ry.stride(0) == 1);
|
59 |
+
assert(y.stride(1) == 1);
|
60 |
+
const at::cuda::OptionalCUDAGuard device_guard(device_of(w));
|
61 |
+
switch (x.scalar_type()) {
|
62 |
+
case c10::ScalarType::Half:
|
63 |
+
cuda_mm8_seq(
|
64 |
+
B, N, M,
|
65 |
+
x.data_ptr<fp16>(), x.stride(0),
|
66 |
+
w.data_ptr<uint8_t>(), w.stride(0),
|
67 |
+
mx.data_ptr<fp16>(), rx.data_ptr<fp16>(),
|
68 |
+
my.data_ptr<fp16>(), ry.data_ptr<fp16>(),
|
69 |
+
y.data_ptr<fp16>(), y.stride(0));
|
70 |
+
break;
|
71 |
+
case c10::ScalarType::Float:
|
72 |
+
cuda_mm8_seq(
|
73 |
+
B, N, M,
|
74 |
+
x.data_ptr<float>(), x.stride(0),
|
75 |
+
w.data_ptr<uint8_t>(), w.stride(0),
|
76 |
+
mx.data_ptr<float>(), rx.data_ptr<float>(),
|
77 |
+
my.data_ptr<float>(), ry.data_ptr<float>(),
|
78 |
+
y.data_ptr<float>(), y.stride(0));
|
79 |
+
break;
|
80 |
+
default:
|
81 |
+
assert(false && "Only FP16 and FP32 are currently supported");
|
82 |
+
}
|
83 |
+
}
|
84 |
+
void mm8_one(int64_t N, int64_t M,
|
85 |
+
torch::Tensor &x, torch::Tensor &w,
|
86 |
+
torch::Tensor &mx, torch::Tensor &rx,
|
87 |
+
torch::Tensor &my, torch::Tensor &ry,
|
88 |
+
torch::Tensor &y) {
|
89 |
+
assert(x.stride(0) == 1);
|
90 |
+
assert(w.stride(1) == 1);
|
91 |
+
assert(mx.stride(0) == 1 && rx.stride(0) == 1);
|
92 |
+
assert(my.stride(0) == 1 && ry.stride(0) == 1);
|
93 |
+
assert(y.stride(0) == 1);
|
94 |
+
const at::cuda::OptionalCUDAGuard device_guard(device_of(w));
|
95 |
+
switch (x.scalar_type()) {
|
96 |
+
case c10::ScalarType::Half:
|
97 |
+
cuda_mm8_one(
|
98 |
+
N, M,
|
99 |
+
x.data_ptr<fp16>(),
|
100 |
+
w.data_ptr<uint8_t>(), w.stride(0),
|
101 |
+
mx.data_ptr<fp16>(), rx.data_ptr<fp16>(),
|
102 |
+
my.data_ptr<fp16>(), ry.data_ptr<fp16>(),
|
103 |
+
y.data_ptr<float>());
|
104 |
+
break;
|
105 |
+
case c10::ScalarType::Float:
|
106 |
+
cuda_mm8_one(
|
107 |
+
N, M,
|
108 |
+
x.data_ptr<float>(),
|
109 |
+
w.data_ptr<uint8_t>(), w.stride(0),
|
110 |
+
mx.data_ptr<float>(), rx.data_ptr<float>(),
|
111 |
+
my.data_ptr<float>(), ry.data_ptr<float>(),
|
112 |
+
y.data_ptr<float>());
|
113 |
+
break;
|
114 |
+
default:
|
115 |
+
assert(false && "Only FP16 and FP32 are currently supported");
|
116 |
+
}
|
117 |
+
}
|
118 |
+
|
119 |
+
using torch::Tensor;
|
120 |
+
|
121 |
+
#ifndef DISABLE_CUBLAS_GEMM
|
122 |
+
void gemm_fp16_cublas(Tensor a, Tensor b, Tensor c);
|
123 |
+
#endif
|
124 |
+
|
125 |
+
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
|
126 |
+
m.def("wkv_forward", &wkv_forward, "wkv forward");
|
127 |
+
m.def("mm8_seq", &mm8_seq, "mm8 seq");
|
128 |
+
m.def("mm8_one", &mm8_one, "mm8 one");
|
129 |
+
#ifndef DISABLE_CUBLAS_GEMM
|
130 |
+
m.def("gemm_fp16_cublas", &gemm_fp16_cublas, "gemv fp16 cublas");
|
131 |
+
#endif
|
132 |
+
}
|
133 |
+
|
134 |
+
TORCH_LIBRARY(rwkv, m) {
|
135 |
+
m.def("wkv_forward", wkv_forward);
|
136 |
+
m.def("mm8_seq", mm8_seq);
|
137 |
+
m.def("mm8_one", mm8_one);
|
138 |
+
#ifndef DISABLE_CUBLAS_GEMM
|
139 |
+
m.def("gemm_fp16_cublas", gemm_fp16_cublas);
|
140 |
+
#endif
|
141 |
+
}
|
examples_bluejay.jpg
ADDED
examples_extreme_ironing.jpg
ADDED
examples_pizza.jpg
ADDED
examples_waterview.jpg
ADDED
examples_woman_and_dog.png
ADDED
modeling_rwkv.py
ADDED
@@ -0,0 +1,1237 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
########################################################################################################
|
2 |
+
# The RWKV Language Model - https://github.com/BlinkDL/RWKV-LM
|
3 |
+
########################################################################################################
|
4 |
+
|
5 |
+
from typing import Optional
|
6 |
+
import types, gc, os, time, re
|
7 |
+
import torch
|
8 |
+
import torch.nn as nn
|
9 |
+
from torch.nn import functional as F
|
10 |
+
torch.backends.cudnn.benchmark = True
|
11 |
+
torch.backends.cudnn.allow_tf32 = True
|
12 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
13 |
+
current_path = os.path.dirname(os.path.abspath(__file__))
|
14 |
+
|
15 |
+
########################################################################################################
|
16 |
+
|
17 |
+
if os.environ.get('RWKV_JIT_ON') != '0':
|
18 |
+
os.environ["RWKV_JIT_ON"] = '1'
|
19 |
+
MyModule = torch.jit.ScriptModule
|
20 |
+
MyFunction = torch.jit.script_method
|
21 |
+
MyStatic = torch.jit.script
|
22 |
+
else:
|
23 |
+
MyModule = torch.nn.Module
|
24 |
+
def __nop(ob):
|
25 |
+
return ob
|
26 |
+
MyFunction = __nop
|
27 |
+
MyStatic = __nop
|
28 |
+
|
29 |
+
if os.environ.get('RWKV_CUDA_ON') == '1':
|
30 |
+
from torch.utils.cpp_extension import load
|
31 |
+
try:
|
32 |
+
load(
|
33 |
+
name=f"wkv_cuda",
|
34 |
+
sources=[f"{current_path}/cuda/wrapper.cpp", f"{current_path}/cuda/operators.cu", f"{current_path}/cuda/gemm_fp16_cublas.cpp"],
|
35 |
+
verbose=True,
|
36 |
+
extra_ldflags=["cublas.lib" if os.name == "nt" else ""],
|
37 |
+
extra_cuda_cflags=["--use_fast_math", "-O3", "--extra-device-vectorization"],
|
38 |
+
is_python_module=False)
|
39 |
+
DISABLE_CUBLAS_GEMM = False
|
40 |
+
except:
|
41 |
+
print("Failed to build cuBLAS matmul, falling back to torch.matmul. Small model with fp16 will overflow.")
|
42 |
+
load(
|
43 |
+
name=f"wkv_cuda",
|
44 |
+
sources=[f"{current_path}/cuda/wrapper.cpp", f"{current_path}/cuda/operators.cu"],
|
45 |
+
verbose=True,
|
46 |
+
extra_cuda_cflags=["--use_fast_math", "-O3", "--extra-device-vectorization"],
|
47 |
+
extra_cflags=["-DDISABLE_CUBLAS_GEMM"],
|
48 |
+
is_python_module=False)
|
49 |
+
DISABLE_CUBLAS_GEMM = True
|
50 |
+
|
51 |
+
@MyStatic
|
52 |
+
def cuda_wkv(T: int, C: int, w, u, k, v, aa, bb, pp):
|
53 |
+
assert 1 * C % min(C, 32) == 0
|
54 |
+
assert k.dtype == v.dtype == torch.float16 or k.dtype == v.dtype == torch.float32
|
55 |
+
assert w.dtype == u.dtype == aa.dtype == bb.dtype == pp.dtype == torch.float32
|
56 |
+
w = w.contiguous()
|
57 |
+
u = u.contiguous()
|
58 |
+
k = k.contiguous()
|
59 |
+
v = v.contiguous()
|
60 |
+
y = torch.empty((T, C), device=w.device, memory_format=torch.contiguous_format, dtype=k.dtype)
|
61 |
+
torch.ops.rwkv.wkv_forward(1, T, C, w, u, k, v, y, aa, bb, pp)
|
62 |
+
return y, aa, bb, pp
|
63 |
+
@MyStatic
|
64 |
+
def cuda_mm8_seq(B: int, N: int, M: int, x, w, mx, rx, my, ry):
|
65 |
+
assert x.dtype == mx.dtype == rx.dtype == my.dtype == ry.dtype
|
66 |
+
assert x.dtype == torch.float32 or x.dtype == torch.float16
|
67 |
+
assert w.dtype == torch.uint8
|
68 |
+
assert x.shape == (B, N)
|
69 |
+
assert w.shape == (N, M)
|
70 |
+
assert rx.shape == mx.shape == (M,)
|
71 |
+
assert ry.shape == my.shape == (N, 1)
|
72 |
+
y = torch.empty((B, M), device=w.device, dtype=x.dtype)
|
73 |
+
torch.ops.rwkv.mm8_seq(B, N, M, x, w, mx, rx, my, ry, y)
|
74 |
+
return y
|
75 |
+
@MyStatic
|
76 |
+
def cuda_mm8_one(N: int, M: int, x, w, mx, rx, my, ry):
|
77 |
+
assert x.dtype == mx.dtype == rx.dtype == my.dtype == ry.dtype
|
78 |
+
assert x.dtype == torch.float32 or x.dtype == torch.float16
|
79 |
+
assert w.dtype == torch.uint8
|
80 |
+
assert x.shape == (N,)
|
81 |
+
assert w.shape == (N, M)
|
82 |
+
assert rx.shape == mx.shape == (M,)
|
83 |
+
assert ry.shape == my.shape == (N, 1)
|
84 |
+
y = torch.zeros((M,), device=w.device, dtype=torch.float32)
|
85 |
+
torch.ops.rwkv.mm8_one(N, M, x, w, mx, rx, my, ry, y)
|
86 |
+
return y.to(dtype=x.dtype)
|
87 |
+
else:
|
88 |
+
os.environ["RWKV_CUDA_ON"] = '0'
|
89 |
+
|
90 |
+
|
91 |
+
@MyStatic
|
92 |
+
def torch_mm8_seq(x, w, mx, rx, my, ry):
|
93 |
+
return x @ ((w.to(dtype=x.dtype) + 0.5) * ry * rx + my + mx)
|
94 |
+
|
95 |
+
@MyStatic
|
96 |
+
def torch_mm8_one(x, w, mx, rx, my, ry):
|
97 |
+
return x @ ((w.to(dtype=x.dtype) + 0.5) * ry * rx + my + mx)
|
98 |
+
|
99 |
+
if os.environ.get('RWKV_CUDA_ON') == '1':
|
100 |
+
@MyStatic
|
101 |
+
def mm8_seq(x, w, mx, rx, my, ry):
|
102 |
+
if w.device.type == 'cuda' and x.dtype == torch.float16:
|
103 |
+
B, N, M = x.shape[0], w.shape[0], w.shape[1]
|
104 |
+
return cuda_mm8_seq(B, N, M, x, w, mx, rx, my, ry)
|
105 |
+
else:
|
106 |
+
return torch_mm8_seq(x, w, mx, rx, my, ry)
|
107 |
+
@MyStatic
|
108 |
+
def mm8_one(x, w, mx, rx, my, ry):
|
109 |
+
if w.device.type == 'cuda':
|
110 |
+
N, M = w.shape[0], w.shape[1]
|
111 |
+
return cuda_mm8_one(N, M, x, w, mx, rx, my, ry)
|
112 |
+
else:
|
113 |
+
return torch_mm8_one(x, w, mx, rx, my, ry)
|
114 |
+
else:
|
115 |
+
@MyStatic
|
116 |
+
def mm8_seq(x, w, mx, rx, my, ry):
|
117 |
+
return torch_mm8_seq(x, w, mx, rx, my, ry)
|
118 |
+
@MyStatic
|
119 |
+
def mm8_one(x, w, mx, rx, my, ry):
|
120 |
+
return torch_mm8_one(x, w, mx, rx, my, ry)
|
121 |
+
|
122 |
+
def mm8(x: torch.Tensor, w: torch.Tensor, mx: torch.Tensor, rx: torch.Tensor, my: torch.Tensor, ry: torch.Tensor):
|
123 |
+
if len(x.shape) == 1:
|
124 |
+
return mm8_one(x, w, mx, rx, my, ry)
|
125 |
+
return mm8_seq(x, w, mx, rx, my, ry)
|
126 |
+
|
127 |
+
def matmul(a, b, mx: Optional[torch.Tensor]=None, rx: Optional[torch.Tensor]=None, my: Optional[torch.Tensor]=None, ry: Optional[torch.Tensor]=None, output_dtype: Optional[torch.dtype]=None) -> torch.Tensor:
|
128 |
+
if output_dtype is None:
|
129 |
+
output_dtype = a.dtype
|
130 |
+
if b.dtype in [torch.float16, torch.bfloat16, torch.float32]:
|
131 |
+
assert a.dtype == b.dtype
|
132 |
+
return matmul_float(a, b, output_dtype=output_dtype)
|
133 |
+
elif b.dtype == torch.uint8:
|
134 |
+
assert mx is not None
|
135 |
+
assert rx is not None
|
136 |
+
assert my is not None
|
137 |
+
assert ry is not None
|
138 |
+
return mm8(a, b, mx, rx, my, ry).to(output_dtype)
|
139 |
+
else:
|
140 |
+
raise ValueError("Unsupported dtype")
|
141 |
+
|
142 |
+
|
143 |
+
if os.environ.get('RWKV_CUDA_ON') == '1' and not DISABLE_CUBLAS_GEMM:
|
144 |
+
def matmul_float(a, b, output_dtype: Optional[torch.dtype]=None):
|
145 |
+
if output_dtype is None:
|
146 |
+
output_dtype = a.dtype
|
147 |
+
if a.dtype == b.dtype == torch.float16 and a.device.type == 'cuda':
|
148 |
+
if len(a.shape) == 1:
|
149 |
+
assert len(b.shape) == 2
|
150 |
+
c = torch.empty((b.shape[-1],), dtype=output_dtype, device=a.device)
|
151 |
+
a = a.unsqueeze(0)
|
152 |
+
else:
|
153 |
+
assert len(a.shape) == len(b.shape)
|
154 |
+
assert len(a.shape) == 2 or len(a.shape) == 3
|
155 |
+
# torch.empty((*a.shape[:-1], b.shape[-1])) doesn't work with jit
|
156 |
+
if len(a.shape) == 2:
|
157 |
+
c = torch.empty((a.shape[0], b.shape[-1]), dtype=output_dtype, device=a.device)
|
158 |
+
else:
|
159 |
+
c = torch.empty((a.shape[0], a.shape[1], b.shape[-1]), dtype=output_dtype, device=a.device)
|
160 |
+
torch.ops.rwkv.gemm_fp16_cublas(a, b, c)
|
161 |
+
return c
|
162 |
+
else:
|
163 |
+
return (a @ b).to(output_dtype)
|
164 |
+
|
165 |
+
else:
|
166 |
+
def matmul_float(a, b, output_dtype: Optional[torch.dtype]=None):
|
167 |
+
return (a @ b).to(output_dtype)
|
168 |
+
|
169 |
+
|
170 |
+
if os.environ.get('RWKV_DML_ON') == '1':
|
171 |
+
import torch_directml
|
172 |
+
print("PyTorch with DirectML Enabled")
|
173 |
+
|
174 |
+
########################################################################################################
|
175 |
+
|
176 |
+
class RWKV(MyModule):
|
177 |
+
def __init__(self, model, strategy, verbose = True, convert_and_save_and_exit = None):
|
178 |
+
super().__init__()
|
179 |
+
if verbose:
|
180 |
+
prxxx = lambda *args, **kwargs: print(*args, **kwargs)
|
181 |
+
else:
|
182 |
+
prxxx = lambda *args, **kwargs: None
|
183 |
+
|
184 |
+
STRATEGY_REGEX = r"^(?:(?:^|->) *(?:cuda(?::[\d]+)?|cpu|mps|dml) (?:fp(?:16|32)|bf16)(?:i8|i4|i3)?(?: \*[\d]+\+?)? *)+$"
|
185 |
+
if not re.match(STRATEGY_REGEX, strategy):
|
186 |
+
raise ValueError("Invalid strategy. Please read https://pypi.org/project/rwkv/")
|
187 |
+
|
188 |
+
strategy = ('->'.join([x.strip() for x in strategy.split('->')])).replace('->', ' -> ')
|
189 |
+
self.args = types.SimpleNamespace()
|
190 |
+
args = self.args
|
191 |
+
args.MODEL_NAME = model
|
192 |
+
args.strategy_string = strategy
|
193 |
+
|
194 |
+
# Rescale for fp16 mode: set x = x/2 every X layer (to avoid fp16 overflow)
|
195 |
+
try:
|
196 |
+
self.RESCALE_LAYER = int(os.environ["RWKV_RESCALE_LAYER"]) # !!! NOTE: SEEMS YOU SHOULD SET IT TO 999 (disable) FOR RWKV-MUSIC MODELS !!!
|
197 |
+
except:
|
198 |
+
self.RESCALE_LAYER = 6 if 'fp16' in strategy else 0
|
199 |
+
prxxx(f'RWKV_JIT_ON {os.environ["RWKV_JIT_ON"]} RWKV_CUDA_ON {os.environ["RWKV_CUDA_ON"]} RESCALE_LAYER {self.RESCALE_LAYER}\n')
|
200 |
+
|
201 |
+
args.MODEL_NAME = args.MODEL_NAME.strip()
|
202 |
+
if not args.MODEL_NAME.endswith('.pth'):
|
203 |
+
args.MODEL_NAME += '.pth'
|
204 |
+
prxxx(f'Loading {args.MODEL_NAME} ...')
|
205 |
+
with torch.no_grad():
|
206 |
+
self.w = torch.load(args.MODEL_NAME, map_location='cpu') # load model to CPU first
|
207 |
+
gc.collect()
|
208 |
+
w = self.w
|
209 |
+
|
210 |
+
ALREADY_CONVERTED = False
|
211 |
+
if '_strategy' in w:
|
212 |
+
ALREADY_CONVERTED = True
|
213 |
+
assert convert_and_save_and_exit == None # you should only convert a raw model
|
214 |
+
prxxx(f"Converted model: strategy {w['_strategy']}, version {w['_version']}\n")
|
215 |
+
assert w['_strategy'] == args.strategy_string # if you are using a new strategy, re-convert the model
|
216 |
+
assert float(w['_version']) >= 0.7 # sometimes you should re-convert using latest convert_model.py
|
217 |
+
assert w['_rescale_layer'] == self.RESCALE_LAYER # must use same RESCALE_LAYER to avoid mistakes
|
218 |
+
del w['_strategy']
|
219 |
+
del w['_version']
|
220 |
+
del w['_rescale_layer']
|
221 |
+
|
222 |
+
args.n_embd = w['emb.weight'].shape[1]
|
223 |
+
args.n_att = w['blocks.0.att.key.weight'].shape[0] # note: transposed matrix
|
224 |
+
args.n_ffn = w['blocks.0.ffn.key.weight'].shape[0] # note: transposed matrix
|
225 |
+
args.n_layer = 0
|
226 |
+
keys = list(w.keys())
|
227 |
+
self.version = 4
|
228 |
+
for x in keys:
|
229 |
+
layer_id = int(x.split('.')[1]) if ('blocks.' in x) else 0
|
230 |
+
args.n_layer = max(args.n_layer, layer_id+1)
|
231 |
+
if 'ln_x' in x:
|
232 |
+
self.version = max(5, self.version)
|
233 |
+
if 'gate.weight' in x:
|
234 |
+
self.version = max(5.1, self.version)
|
235 |
+
if int(self.version) == 5 and 'att.time_decay' in x:
|
236 |
+
args.n_head = w[x].shape[0]
|
237 |
+
if len(w[x].shape) > 1:
|
238 |
+
if w[x].shape[1] > 1:
|
239 |
+
self.version = max(5.2, self.version)
|
240 |
+
if 'time_maa' in x:
|
241 |
+
self.version = max(6, self.version)
|
242 |
+
if int(self.version) == 6 and 'time_faaaa' in x:
|
243 |
+
args.n_head = w[x].shape[0]
|
244 |
+
prxxx(f'Model detected: v{self.version:.1f}')
|
245 |
+
|
246 |
+
####################### Compute strategy
|
247 |
+
|
248 |
+
s = [x.strip().split(' ') for x in strategy.split('->')]
|
249 |
+
plan = [0] * len(s)
|
250 |
+
stream_i = -1
|
251 |
+
stream_count = 0
|
252 |
+
to_allocate = args.n_layer + 1
|
253 |
+
allocated = 0
|
254 |
+
free_slots = 0
|
255 |
+
for i in range(len(s)):
|
256 |
+
si = s[i]
|
257 |
+
si1 = si[1]
|
258 |
+
if si1.startswith('fp32'): si[1] = [torch.float]
|
259 |
+
elif si1.startswith('fp16'): si[1] = [torch.float16]
|
260 |
+
elif si1.startswith('bf16'): si[1] = [torch.bfloat16]
|
261 |
+
if si1.endswith('i8'): si[1] += [torch.uint8]
|
262 |
+
else: si[1] += [si[1][0]]
|
263 |
+
if len(si) > 2:
|
264 |
+
ss = si[2]
|
265 |
+
assert ss.startswith('*')
|
266 |
+
if ss.endswith('+'):
|
267 |
+
plan[i] = int(ss[1:-1])
|
268 |
+
stream_i = i
|
269 |
+
else:
|
270 |
+
plan[i] = int(ss[1:])
|
271 |
+
allocated += plan[i]
|
272 |
+
if allocated >= to_allocate:
|
273 |
+
plan[i] += to_allocate - allocated
|
274 |
+
break
|
275 |
+
else:
|
276 |
+
free_slots += 1
|
277 |
+
if stream_i < 0:
|
278 |
+
if free_slots > 0 and to_allocate > allocated:
|
279 |
+
for i in range(len(s)):
|
280 |
+
if plan[i] == 0:
|
281 |
+
plan[i] = (to_allocate - allocated) // free_slots
|
282 |
+
allocated += plan[i]
|
283 |
+
free_slots -= 1
|
284 |
+
if to_allocate > allocated:
|
285 |
+
plan[len(s)-1] += to_allocate - allocated
|
286 |
+
else:
|
287 |
+
if to_allocate > allocated:
|
288 |
+
stream_count = to_allocate - allocated
|
289 |
+
plan[stream_i] += stream_count
|
290 |
+
prxxx(f'Strategy: (total {args.n_layer}+1={args.n_layer+1} layers)')
|
291 |
+
for i in range(len(s)):
|
292 |
+
ss = s[i]
|
293 |
+
if i != stream_i:
|
294 |
+
prxxx(f'* {ss[0]} {str(ss[1]).replace("torch.","")}, store {plan[i]} layers')
|
295 |
+
else:
|
296 |
+
prxxx(f'* {ss[0]} {str(ss[1]).replace("torch.","")}, store {plan[i]-stream_count} layers, stream {stream_count} layers')
|
297 |
+
plan[i] += (0 if i == 0 else plan[i-1])
|
298 |
+
self.strategy = [None] * (args.n_layer + 1)
|
299 |
+
strategy = self.strategy
|
300 |
+
for n in range(args.n_layer + 1):
|
301 |
+
for i in range(len(s)):
|
302 |
+
if n < plan[i]:
|
303 |
+
strategy[n] = types.SimpleNamespace()
|
304 |
+
strategy[n].device = s[i][0]
|
305 |
+
strategy[n].atype = s[i][1][0]
|
306 |
+
strategy[n].wtype = s[i][1][1]
|
307 |
+
strategy[n].stream = False
|
308 |
+
if strategy[n].device == 'dml':
|
309 |
+
strategy[n].device = torch_directml.device()
|
310 |
+
if i == stream_i and n >= (plan[i] - stream_count):
|
311 |
+
strategy[n].stream = True
|
312 |
+
break
|
313 |
+
prxxx(f"{n}-{strategy[n].device}-{str(strategy[n].atype).replace('torch.','')}-{str(strategy[n].wtype).replace('torch.','')}{'-stream' if strategy[n].stream else ''}",end=' ')
|
314 |
+
prxxx()
|
315 |
+
|
316 |
+
####################### Load weights to self.w
|
317 |
+
|
318 |
+
if not ALREADY_CONVERTED:
|
319 |
+
try: # precompute embedding
|
320 |
+
w['emb.weight'] = F.layer_norm(w['emb.weight'], (args.n_embd,), weight=w['blocks.0.ln0.weight'], bias=w['blocks.0.ln0.bias'])
|
321 |
+
except:
|
322 |
+
w['emb.weight'] = F.layer_norm(w['emb.weight'].float(), (args.n_embd,), weight=w['blocks.0.ln0.weight'].float(), bias=w['blocks.0.ln0.bias'].float())
|
323 |
+
# del w['blocks.0.ln0.weight']
|
324 |
+
# del w['blocks.0.ln0.bias']
|
325 |
+
|
326 |
+
print_need_newline = False
|
327 |
+
|
328 |
+
REAL_TIME_FIRST = False
|
329 |
+
for x in list(w.keys()):
|
330 |
+
if '.time_faaaa' in x: REAL_TIME_FIRST = True
|
331 |
+
if REAL_TIME_FIRST:
|
332 |
+
w = {k.replace('.time_faaaa','.time_first') if '.time_faaaa' in k else k: v for k, v in w.items()}
|
333 |
+
self.w = w
|
334 |
+
|
335 |
+
keys = list(w.keys())
|
336 |
+
for x in keys:
|
337 |
+
w[x].requires_grad = False
|
338 |
+
layer_id = int(x.split('.')[1]) if ('blocks.' in x) else 0
|
339 |
+
if ('ln_out.' in x) or ('head.' in x):
|
340 |
+
layer_id = args.n_layer
|
341 |
+
dd = strategy[layer_id]
|
342 |
+
DEVICE = dd.device
|
343 |
+
ATYPE = dd.atype
|
344 |
+
WTYPE = dd.wtype
|
345 |
+
|
346 |
+
if not ALREADY_CONVERTED:
|
347 |
+
if self.RESCALE_LAYER > 0:
|
348 |
+
if 'att.output.weight' in x:
|
349 |
+
w[x] = w[x] / (2 ** int(layer_id // self.RESCALE_LAYER))
|
350 |
+
if 'ffn.value.weight' in x:
|
351 |
+
w[x] = w[x] / (2 ** int(layer_id // self.RESCALE_LAYER))
|
352 |
+
|
353 |
+
if '.time_' in x:
|
354 |
+
w[x] = w[x].squeeze()
|
355 |
+
if 'key.weight' in x or 'value.weight' in x or 'receptance.weight' in x or 'gate.weight' in x or 'output.weight' in x or 'head.weight' in x:
|
356 |
+
w[x] = w[x].t()
|
357 |
+
|
358 |
+
if '.time_decay' in x and '_w' not in x: # need fp32 for this
|
359 |
+
if self.version == 4:
|
360 |
+
w[x] = -torch.exp(w[x].float())
|
361 |
+
elif int(self.version) == 5:
|
362 |
+
w[x] = torch.exp(-torch.exp(w[x].float())).reshape(-1,1,1)
|
363 |
+
if self.version == 5.2:
|
364 |
+
w[x] = w[x].reshape(args.n_head, -1, 1)
|
365 |
+
elif self.version == 6.0:
|
366 |
+
w[x] = w[x].float().reshape(args.n_head, -1, 1)
|
367 |
+
elif '.time_first' in x: # need fp32 for this
|
368 |
+
if self.version == 4:
|
369 |
+
w[x] = w[x].float()
|
370 |
+
elif int(self.version) in [5, 6]:
|
371 |
+
if REAL_TIME_FIRST:
|
372 |
+
w[x] = w[x].float().reshape(-1,1,1)
|
373 |
+
else:
|
374 |
+
w[x] = torch.exp(w[x].float()).reshape(-1,1,1)
|
375 |
+
if self.version in [5.2, 6.0]:
|
376 |
+
w[x] = w[x].reshape(args.n_head, -1, 1)
|
377 |
+
elif '.ln_x' in x: # need fp32 for group_norm
|
378 |
+
w[x] = w[x].float()
|
379 |
+
else:
|
380 |
+
if (len(w[x].shape) == 2) and ('emb' not in x):
|
381 |
+
if WTYPE != torch.uint8:
|
382 |
+
w[x] = w[x].to(dtype=WTYPE)
|
383 |
+
else:
|
384 |
+
w[x] = w[x].float()
|
385 |
+
|
386 |
+
if w[x].shape[0] > w[x].shape[1]:
|
387 |
+
w[x+'_my'] = torch.amin(w[x], dim=1).unsqueeze(1)
|
388 |
+
w[x] = w[x] - w[x+'_my']
|
389 |
+
w[x+'_mx'] = torch.amin(w[x], dim=0)
|
390 |
+
w[x] = w[x] - w[x+'_mx']
|
391 |
+
w[x+'_rx'] = torch.amax(w[x], dim=0)
|
392 |
+
w[x] = w[x] / w[x+'_rx']
|
393 |
+
w[x+'_ry'] = torch.amax(w[x], dim=1).unsqueeze(1)
|
394 |
+
w[x] = w[x] / w[x+'_ry']
|
395 |
+
else:
|
396 |
+
w[x+'_mx'] = torch.amin(w[x], dim=0)
|
397 |
+
w[x] = w[x] - w[x+'_mx']
|
398 |
+
w[x+'_my'] = torch.amin(w[x], dim=1).unsqueeze(1)
|
399 |
+
w[x] = w[x] - w[x+'_my']
|
400 |
+
w[x+'_rx'] = torch.amax(w[x], dim=0)
|
401 |
+
w[x] = w[x] / w[x+'_rx']
|
402 |
+
w[x+'_ry'] = torch.amax(w[x], dim=1).unsqueeze(1)
|
403 |
+
w[x] = w[x] / w[x+'_ry']
|
404 |
+
|
405 |
+
w[x] = torch.clip(torch.floor(w[x] * 256), min=0, max=255).to(dtype=torch.uint8)
|
406 |
+
w[x+'_mx'] = w[x+'_mx'].to(dtype=ATYPE).contiguous()
|
407 |
+
w[x+'_rx'] = (w[x+'_rx'] / 16).to(dtype=ATYPE).contiguous()
|
408 |
+
w[x+'_my'] = w[x+'_my'].to(dtype=ATYPE).contiguous()
|
409 |
+
w[x+'_ry'] = (w[x+'_ry'] / 16).to(dtype=ATYPE).contiguous()
|
410 |
+
else:
|
411 |
+
w[x] = w[x].to(dtype=ATYPE)
|
412 |
+
|
413 |
+
if convert_and_save_and_exit == None:
|
414 |
+
if 'emb.' in x:
|
415 |
+
w[x] = w[x].contiguous()
|
416 |
+
elif (dd.stream) and (x.endswith('key.weight') or x.endswith('value.weight') or x.endswith('receptance.weight') or x.endswith('output.weight')):
|
417 |
+
try:
|
418 |
+
w[x] = w[x].contiguous().pin_memory() # if you see "CUDA error: out of memory" here, that's out of CPU RAM, not VRAM. Get more RAM :)
|
419 |
+
except:
|
420 |
+
print('Note: You are running out of RAM. Get more CPU RAM. Now this will run much slower.')
|
421 |
+
elif DEVICE != 'cpu':
|
422 |
+
w[x] = w[x].to(device=DEVICE).contiguous()
|
423 |
+
|
424 |
+
if (dd.stream) or (DEVICE != 'cpu'):
|
425 |
+
try:
|
426 |
+
w[x+'_mx'] = w[x+'_mx'].to(device=DEVICE).contiguous()
|
427 |
+
w[x+'_rx'] = w[x+'_rx'].to(device=DEVICE).contiguous()
|
428 |
+
w[x+'_my'] = w[x+'_my'].to(device=DEVICE).contiguous()
|
429 |
+
w[x+'_ry'] = w[x+'_ry'].to(device=DEVICE).contiguous()
|
430 |
+
except:
|
431 |
+
pass
|
432 |
+
|
433 |
+
if 'ffn.value.weight' in x:
|
434 |
+
gc.collect()
|
435 |
+
if 'cuda' in args.strategy_string:
|
436 |
+
torch.cuda.empty_cache()
|
437 |
+
|
438 |
+
shape = [i for i in w[x].shape if i != 1]
|
439 |
+
if len(shape) > 1:
|
440 |
+
shape = f" {str(shape[0]).rjust(5)} {str(shape[1]).rjust(5)}"
|
441 |
+
else:
|
442 |
+
shape = f" {str(shape[0]).rjust(5)} "
|
443 |
+
if layer_id == 0 or layer_id >= args.n_layer-1:
|
444 |
+
if print_need_newline:
|
445 |
+
prxxx('\n', end = '')
|
446 |
+
print_need_newline = False
|
447 |
+
dt = str(w[x].dtype).replace('torch.', '')
|
448 |
+
dt = dt.replace('float32', 'f32').replace('bfloat16', 'bf16').replace('float16', 'f16').replace('uint8', 'i8')
|
449 |
+
prxxx(x.ljust(32), dt.rjust(4), str(w[x].device).rjust(8), shape, ' (pinned)' if w[x].is_pinned() else '')
|
450 |
+
else:
|
451 |
+
print_need_newline = True
|
452 |
+
prxxx('.', end = '', flush = True)
|
453 |
+
|
454 |
+
if convert_and_save_and_exit:
|
455 |
+
w['_strategy'] = args.strategy_string
|
456 |
+
w['_rescale_layer'] = self.RESCALE_LAYER
|
457 |
+
w['_version'] = '0.7'
|
458 |
+
if not convert_and_save_and_exit.endswith('.pth'):
|
459 |
+
convert_and_save_and_exit += '.pth'
|
460 |
+
prxxx(f'Saving to {convert_and_save_and_exit}...')
|
461 |
+
torch.save(w, convert_and_save_and_exit)
|
462 |
+
prxxx(f'Converted and saved. Now this will exit.')
|
463 |
+
exit(0)
|
464 |
+
|
465 |
+
if self.version == 5.2 and os.environ["RWKV_CUDA_ON"] == '1':
|
466 |
+
HEAD_SIZE = args.n_att // args.n_head
|
467 |
+
rwkv5 = load(name="rwkv5", sources=[f"{current_path}/cuda/rwkv5_op.cpp", f"{current_path}/cuda/rwkv5.cu"],
|
468 |
+
verbose=True, extra_cuda_cflags=["-res-usage", "--use_fast_math", "-O3", "-Xptxas -O3" if os.name != "nt" else "", "--extra-device-vectorization", f"-D_N_={HEAD_SIZE}"])
|
469 |
+
|
470 |
+
class RWKV_5(torch.autograd.Function):
|
471 |
+
@staticmethod
|
472 |
+
def forward(ctx, B, T, C, H, state, r, k, v, w, u):
|
473 |
+
with torch.no_grad():
|
474 |
+
assert HEAD_SIZE == C // H
|
475 |
+
ctx.B = B
|
476 |
+
ctx.T = T
|
477 |
+
ctx.C = C
|
478 |
+
ctx.H = H
|
479 |
+
assert state.dtype == torch.float32
|
480 |
+
assert w.dtype == torch.float32
|
481 |
+
assert r.is_contiguous()
|
482 |
+
assert k.is_contiguous()
|
483 |
+
assert v.is_contiguous()
|
484 |
+
assert w.is_contiguous()
|
485 |
+
assert u.is_contiguous()
|
486 |
+
assert state.is_contiguous()
|
487 |
+
|
488 |
+
y = torch.empty((B, T, C), device=w.device, dtype=r.dtype, memory_format=torch.contiguous_format)
|
489 |
+
if r.dtype == torch.bfloat16:
|
490 |
+
rwkv5.forward_bf16(B, T, C, H, state, r, k, v, w, u, y)
|
491 |
+
elif r.dtype == torch.float16:
|
492 |
+
rwkv5.forward_fp16(B, T, C, H, state, r, k, v, w, u, y)
|
493 |
+
elif r.dtype == torch.float32:
|
494 |
+
rwkv5.forward_fp32(B, T, C, H, state, r, k, v, w, u, y)
|
495 |
+
return y, state
|
496 |
+
self.RWKV_5 = RWKV_5
|
497 |
+
|
498 |
+
if self.version == 6.0 and os.environ["RWKV_CUDA_ON"] == '1':
|
499 |
+
HEAD_SIZE = args.n_att // args.n_head
|
500 |
+
rwkv6 = load(name="rwkv6", sources=[f"{current_path}/cuda/rwkv6_op.cpp", f"{current_path}/cuda/rwkv6.cu"],
|
501 |
+
verbose=True, extra_cuda_cflags=["-res-usage", "--use_fast_math", "-O3", "-Xptxas -O3", "--extra-device-vectorization", f"-D_N_={HEAD_SIZE}", f"-D_T_={4096}"])
|
502 |
+
|
503 |
+
class RWKV_6(torch.autograd.Function):
|
504 |
+
@staticmethod
|
505 |
+
def forward(ctx, B, T, C, H, state, r, k, v, w, u):
|
506 |
+
with torch.no_grad():
|
507 |
+
assert HEAD_SIZE == C // H
|
508 |
+
ctx.B = B
|
509 |
+
ctx.T = T
|
510 |
+
ctx.C = C
|
511 |
+
ctx.H = H
|
512 |
+
assert state.dtype == torch.float32
|
513 |
+
assert w.dtype == torch.float32
|
514 |
+
assert r.is_contiguous()
|
515 |
+
assert k.is_contiguous()
|
516 |
+
assert v.is_contiguous()
|
517 |
+
assert w.is_contiguous()
|
518 |
+
assert u.is_contiguous()
|
519 |
+
eew = torch.exp(-torch.exp(w.float())).contiguous()
|
520 |
+
|
521 |
+
y = torch.empty((B, T, C), device=w.device, dtype=r.dtype, memory_format=torch.contiguous_format)
|
522 |
+
if r.dtype == torch.bfloat16:
|
523 |
+
rwkv6.forward_bf16(B, T, C, H, state, r, k, v, eew, u, y)
|
524 |
+
elif r.dtype == torch.float16:
|
525 |
+
rwkv6.forward_fp16(B, T, C, H, state, r, k, v, eew, u, y)
|
526 |
+
elif r.dtype == torch.float32:
|
527 |
+
rwkv6.forward_fp32(B, T, C, H, state, r, k, v, eew, u, y)
|
528 |
+
return y, state
|
529 |
+
self.RWKV_6 = RWKV_6
|
530 |
+
|
531 |
+
gc.collect()
|
532 |
+
if 'cuda' in args.strategy_string:
|
533 |
+
torch.cuda.empty_cache()
|
534 |
+
|
535 |
+
def RUN_RWKV_5(self, B, T, C, H, state, r, k, v, w, u):
|
536 |
+
return self.RWKV_5.apply(B, T, C, H, state, r, k, v, w, u)
|
537 |
+
|
538 |
+
def RUN_RWKV_6(self, B, T, C, H, state, r, k, v, w, u):
|
539 |
+
return self.RWKV_6.apply(B, T, C, H, state, r, k, v, w, u)
|
540 |
+
|
541 |
+
########################################################################################################
|
542 |
+
|
543 |
+
@MyFunction
|
544 |
+
def ffn_one(self, x, sx, ln_w, ln_b, k_mix, r_mix, kw, vw, rw, kmx, krx, kmy, kry, vmx, vrx, vmy, vry, rmx, rrx, rmy, rry):
|
545 |
+
xx = F.layer_norm(x, (x.shape[-1],), weight=ln_w, bias=ln_b)
|
546 |
+
kx = xx * k_mix + sx * (1 - k_mix)
|
547 |
+
rx = xx * r_mix + sx * (1 - r_mix)
|
548 |
+
|
549 |
+
r = torch.sigmoid(matmul(rx, rw, rmx, rrx, rmy, rry))
|
550 |
+
vx = torch.relu(matmul(kx, kw, kmx, krx, kmy, kry)) ** 2
|
551 |
+
out = r * matmul(vx, vw, vmx, vrx, vmy, vry)
|
552 |
+
return x + out, xx
|
553 |
+
|
554 |
+
@MyFunction
|
555 |
+
def ffn_seq(self, x, sx, ln_w, ln_b, k_mix, r_mix, kw, vw, rw, kmx, krx, kmy, kry, vmx, vrx, vmy, vry, rmx, rrx, rmy, rry):
|
556 |
+
xx = F.layer_norm(x, (x.shape[-1],), weight=ln_w, bias=ln_b)
|
557 |
+
sx = torch.cat((sx.unsqueeze(0), xx[:-1,:]))
|
558 |
+
kx = xx * k_mix + sx * (1 - k_mix)
|
559 |
+
rx = xx * r_mix + sx * (1 - r_mix)
|
560 |
+
|
561 |
+
r = torch.sigmoid(matmul(rx, rw, rmx, rrx, rmy, rry))
|
562 |
+
vx = torch.relu(matmul(kx, kw, kmx, krx, kmy, kry)) ** 2
|
563 |
+
out = r * matmul(vx, vw, vmx, vrx, vmy, vry)
|
564 |
+
return x + out, xx[-1,:]
|
565 |
+
|
566 |
+
@MyFunction
|
567 |
+
def ffn_one_v6(self, x, sx, ln_w, ln_b, k_maa, r_maa, kw, vw, rw, kmx, krx, kmy, kry, vmx, vrx, vmy, vry, rmx, rrx, rmy, rry):
|
568 |
+
xx = F.layer_norm(x, (x.shape[-1],), weight=ln_w, bias=ln_b)
|
569 |
+
sx = sx - xx
|
570 |
+
kx = xx + sx * k_maa
|
571 |
+
rx = xx + sx * r_maa
|
572 |
+
|
573 |
+
r = torch.sigmoid(matmul(rx, rw, rmx, rrx, rmy, rry))
|
574 |
+
vx = torch.relu(matmul(kx, kw, kmx, krx, kmy, kry)) ** 2
|
575 |
+
out = r * matmul(vx, vw, vmx, vrx, vmy, vry)
|
576 |
+
return x + out, xx
|
577 |
+
|
578 |
+
@MyFunction
|
579 |
+
def ffn_seq_v6(self, x, sx, ln_w, ln_b, k_maa, r_maa, kw, vw, rw, kmx, krx, kmy, kry, vmx, vrx, vmy, vry, rmx, rrx, rmy, rry):
|
580 |
+
xx = F.layer_norm(x, (x.shape[-1],), weight=ln_w, bias=ln_b)
|
581 |
+
sx = torch.cat((sx.unsqueeze(0), xx[:-1,:]))
|
582 |
+
sx = sx - xx
|
583 |
+
kx = xx + sx * k_maa
|
584 |
+
rx = xx + sx * r_maa
|
585 |
+
|
586 |
+
r = torch.sigmoid(matmul(rx, rw, rmx, rrx, rmy, rry))
|
587 |
+
vx = torch.relu(matmul(kx, kw, kmx, krx, kmy, kry)) ** 2
|
588 |
+
out = r * matmul(vx, vw, vmx, vrx, vmy, vry)
|
589 |
+
return x + out, xx[-1,:]
|
590 |
+
|
591 |
+
########################################################################################################
|
592 |
+
|
593 |
+
@MyFunction
|
594 |
+
def att_one(self, x, sx, aa, bb, pp, ln_w, ln_b, k_mix, v_mix, r_mix, t_decay, t_first, kw, vw, rw, ow, kmx, krx, kmy, kry, vmx, vrx, vmy, vry, rmx, rrx, rmy, rry, omx, orx, omy, ory):
|
595 |
+
xx = F.layer_norm(x, (x.shape[-1],), weight=ln_w, bias=ln_b)
|
596 |
+
kx = xx * k_mix + sx * (1 - k_mix)
|
597 |
+
vx = xx * v_mix + sx * (1 - v_mix)
|
598 |
+
rx = xx * r_mix + sx * (1 - r_mix)
|
599 |
+
|
600 |
+
r = torch.sigmoid(matmul(rx, rw, rmx, rrx, rmy, rry))
|
601 |
+
k = matmul(kx, kw, kmx, krx, kmy, kry, output_dtype=torch.float32)
|
602 |
+
v = matmul(vx, vw, vmx, vrx, vmy, vry, output_dtype=torch.float32)
|
603 |
+
|
604 |
+
ww = t_first + k
|
605 |
+
p = torch.maximum(pp, ww)
|
606 |
+
e1 = torch.exp(pp - p)
|
607 |
+
e2 = torch.exp(ww - p)
|
608 |
+
wkv = ((e1 * aa + e2 * v) / (e1 * bb + e2)).to(dtype=x.dtype)
|
609 |
+
ww = t_decay + pp
|
610 |
+
p = torch.maximum(ww, k)
|
611 |
+
e1 = torch.exp(ww - p)
|
612 |
+
e2 = torch.exp(k - p)
|
613 |
+
|
614 |
+
out = matmul(r * wkv, ow, omx, orx, omy, ory)
|
615 |
+
return x + out, xx, e1 * aa + e2 * v, e1 * bb + e2, p
|
616 |
+
|
617 |
+
@MyFunction
|
618 |
+
def att_seq(self, x, sx, aa, bb, pp, ln_w, ln_b, k_mix, v_mix, r_mix, t_decay, t_first, kw, vw, rw, ow, kmx, krx, kmy, kry, vmx, vrx, vmy, vry, rmx, rrx, rmy, rry, omx, orx, omy, ory):
|
619 |
+
xx = F.layer_norm(x, (x.shape[-1],), weight=ln_w, bias=ln_b)
|
620 |
+
sx = torch.cat((sx.unsqueeze(0), xx[:-1,:]))
|
621 |
+
kx = xx * k_mix + sx * (1 - k_mix)
|
622 |
+
vx = xx * v_mix + sx * (1 - v_mix)
|
623 |
+
rx = xx * r_mix + sx * (1 - r_mix)
|
624 |
+
|
625 |
+
r = torch.sigmoid(matmul(rx, rw, rmx, rrx, rmy, rry))
|
626 |
+
k = matmul(kx, kw, kmx, krx, kmy, kry, output_dtype=torch.float32)
|
627 |
+
v = matmul(vx, vw, vmx, vrx, vmy, vry, output_dtype=torch.float32)
|
628 |
+
|
629 |
+
T = x.shape[0]
|
630 |
+
for t in range(T):
|
631 |
+
kk = k[t]
|
632 |
+
vv = v[t]
|
633 |
+
ww = t_first + kk
|
634 |
+
p = torch.maximum(pp, ww)
|
635 |
+
e1 = torch.exp(pp - p)
|
636 |
+
e2 = torch.exp(ww - p)
|
637 |
+
sx[t] = ((e1 * aa + e2 * vv) / (e1 * bb + e2)).to(dtype=x.dtype)
|
638 |
+
ww = t_decay + pp
|
639 |
+
p = torch.maximum(ww, kk)
|
640 |
+
e1 = torch.exp(ww - p)
|
641 |
+
e2 = torch.exp(kk - p)
|
642 |
+
aa = e1 * aa + e2 * vv
|
643 |
+
bb = e1 * bb + e2
|
644 |
+
pp = p
|
645 |
+
out = matmul(r * sx, ow, omx, orx, omy, ory)
|
646 |
+
return x + out, xx[-1,:], aa, bb, pp
|
647 |
+
|
648 |
+
########################################################################################################
|
649 |
+
|
650 |
+
@MyFunction
|
651 |
+
def att_one_v5(self, x, sx, s, ln_w, ln_b, lx_w, lx_b, k_mix, v_mix, r_mix, t_decay, t_first, kw, vw, rw, ow, kmx, krx, kmy, kry, vmx, vrx, vmy, vry, rmx, rrx, rmy, rry, omx, orx, omy, ory):
|
652 |
+
xx = F.layer_norm(x, (x.shape[-1],), weight=ln_w, bias=ln_b)
|
653 |
+
kx = xx * k_mix + sx * (1 - k_mix)
|
654 |
+
vx = xx * v_mix + sx * (1 - v_mix)
|
655 |
+
rx = xx * r_mix + sx * (1 - r_mix)
|
656 |
+
|
657 |
+
H = t_decay.shape[0]
|
658 |
+
N = x.shape[-1] // H
|
659 |
+
|
660 |
+
r = matmul(rx, rw, rmx, rrx, rmy, rry, output_dtype=torch.float32).view(H, 1, N)
|
661 |
+
k = matmul(kx, kw, kmx, krx, kmy, kry, output_dtype=torch.float32).view(H, N, 1)
|
662 |
+
v = matmul(vx, vw, vmx, vrx, vmy, vry, output_dtype=torch.float32).view(H, 1, N)
|
663 |
+
|
664 |
+
a = matmul(k, v)
|
665 |
+
out = r @ (t_first * a + s)
|
666 |
+
s = a + t_decay * s
|
667 |
+
|
668 |
+
out = out.flatten()
|
669 |
+
out = F.group_norm(out.unsqueeze(0), num_groups=H, weight=lx_w, bias=lx_b, eps = 64e-5).squeeze(0)
|
670 |
+
out = out.to(dtype=x.dtype)
|
671 |
+
out = matmul(out, ow, omx, orx, omy, ory)
|
672 |
+
|
673 |
+
return x + out, xx, s
|
674 |
+
|
675 |
+
@MyFunction
|
676 |
+
def att_seq_v5(self, x, sx, s, ln_w, ln_b, lx_w, lx_b, k_mix, v_mix, r_mix, t_decay, t_first, kw, vw, rw, ow, kmx, krx, kmy, kry, vmx, vrx, vmy, vry, rmx, rrx, rmy, rry, omx, orx, omy, ory):
|
677 |
+
xx = F.layer_norm(x, (x.shape[-1],), weight=ln_w, bias=ln_b)
|
678 |
+
sx = torch.cat((sx.unsqueeze(0), xx[:-1,:]))
|
679 |
+
kx = xx * k_mix + sx * (1 - k_mix)
|
680 |
+
vx = xx * v_mix + sx * (1 - v_mix)
|
681 |
+
rx = xx * r_mix + sx * (1 - r_mix)
|
682 |
+
|
683 |
+
H = t_decay.shape[0]
|
684 |
+
N = x.shape[-1] // H
|
685 |
+
T = x.shape[0]
|
686 |
+
|
687 |
+
w = t_decay.reshape(-1, 1)
|
688 |
+
u = t_first.reshape(-1, 1)
|
689 |
+
ws = w.pow(T).reshape(H, 1, 1)
|
690 |
+
ind = torch.arange(T-1, -1, -1, device=w.device).unsqueeze(0).repeat(H, 1)
|
691 |
+
w = w.repeat(1, T).pow(ind)
|
692 |
+
wk = w.reshape(H, 1, T)
|
693 |
+
wb = wk.transpose(-2, -1).flip(1)
|
694 |
+
w = torch.cat([w[:, 1:], u], dim=1)
|
695 |
+
w = F.pad(w, (0, T))
|
696 |
+
w = torch.tile(w, [T])
|
697 |
+
w = w[:, :-T].reshape(-1, T, 2 * T - 1)
|
698 |
+
w = w[:, :, T-1:].reshape(H, T, T)
|
699 |
+
|
700 |
+
r = matmul(rx, rw, rmx, rrx, rmy, rry, output_dtype=torch.float32).view(T, H, N).transpose(0, 1)
|
701 |
+
k = matmul(kx, kw, kmx, krx, kmy, kry, output_dtype=torch.float32).view(T, H, N).permute(1, 2, 0)
|
702 |
+
v = matmul(vx, vw, vmx, vrx, vmy, vry, output_dtype=torch.float32).view(T, H, N).transpose(0, 1)
|
703 |
+
|
704 |
+
out = ((r @ k) * w) @ v + (r @ s) * wb
|
705 |
+
s = ws * s + (k * wk) @ v
|
706 |
+
|
707 |
+
out = out.transpose(0, 1).contiguous().reshape(T, H*N)
|
708 |
+
out = F.group_norm(out, num_groups=H, weight=lx_w, bias=lx_b, eps = 64e-5)
|
709 |
+
out = out.to(dtype=x.dtype)
|
710 |
+
out = matmul(out, ow, omx, orx, omy, ory)
|
711 |
+
|
712 |
+
return x + out, xx[-1,:], s
|
713 |
+
|
714 |
+
########################################################################################################
|
715 |
+
|
716 |
+
@MyFunction
|
717 |
+
def att_one_v5_1(self, x, sx, s, ln_w, ln_b, lx_w, lx_b, k_mix, v_mix, r_mix, g_mix, t_decay, t_first, kw, vw, rw, gw, ow, kmx, krx, kmy, kry, vmx, vrx, vmy, vry, rmx, rrx, rmy, rry, gmx, grx, gmy, gry, omx, orx, omy, ory):
|
718 |
+
xx = F.layer_norm(x, (x.shape[-1],), weight=ln_w, bias=ln_b)
|
719 |
+
kx = xx * k_mix + sx * (1 - k_mix)
|
720 |
+
vx = xx * v_mix + sx * (1 - v_mix)
|
721 |
+
rx = xx * r_mix + sx * (1 - r_mix)
|
722 |
+
gx = xx * g_mix + sx * (1 - g_mix)
|
723 |
+
|
724 |
+
H = t_decay.shape[0]
|
725 |
+
N = x.shape[-1] // H
|
726 |
+
|
727 |
+
r = matmul(rx, rw, rmx, rrx, rmy, rry, output_dtype=torch.float32).view(H, 1, N)
|
728 |
+
k = matmul(kx, kw, kmx, krx, kmy, kry, output_dtype=torch.float32).view(H, N, 1)
|
729 |
+
v = matmul(vx, vw, vmx, vrx, vmy, vry, output_dtype=torch.float32).view(H, 1, N)
|
730 |
+
g = F.silu(matmul(gx, gw, gmx, grx, gmy, gry))
|
731 |
+
|
732 |
+
a = matmul(k, v)
|
733 |
+
out = r @ (t_first * a + s)
|
734 |
+
s = a + t_decay * s
|
735 |
+
|
736 |
+
out = out.flatten()
|
737 |
+
out = F.group_norm(out.unsqueeze(0), num_groups=H, weight=lx_w, bias=lx_b, eps = 64e-5).squeeze(0)
|
738 |
+
out = out.to(dtype=x.dtype) * g
|
739 |
+
out = matmul(out, ow, omx, orx, omy, ory)
|
740 |
+
|
741 |
+
return x + out, xx, s
|
742 |
+
|
743 |
+
@MyFunction
|
744 |
+
def att_seq_v5_1(self, x, sx, s, ln_w, ln_b, lx_w, lx_b, k_mix, v_mix, r_mix, g_mix, t_decay, t_first, kw, vw, rw, gw, ow, kmx, krx, kmy, kry, vmx, vrx, vmy, vry, rmx, rrx, rmy, rry, gmx, grx, gmy, gry, omx, orx, omy, ory):
|
745 |
+
xx = F.layer_norm(x, (x.shape[-1],), weight=ln_w, bias=ln_b)
|
746 |
+
sx = torch.cat((sx.unsqueeze(0), xx[:-1,:]))
|
747 |
+
kx = xx * k_mix + sx * (1 - k_mix)
|
748 |
+
vx = xx * v_mix + sx * (1 - v_mix)
|
749 |
+
rx = xx * r_mix + sx * (1 - r_mix)
|
750 |
+
gx = xx * g_mix + sx * (1 - g_mix)
|
751 |
+
|
752 |
+
H = t_decay.shape[0]
|
753 |
+
N = x.shape[-1] // H
|
754 |
+
T = x.shape[0]
|
755 |
+
|
756 |
+
w = t_decay.reshape(-1, 1)
|
757 |
+
u = t_first.reshape(-1, 1)
|
758 |
+
ws = w.pow(T).reshape(H, 1, 1)
|
759 |
+
ind = torch.arange(T-1, -1, -1, device=w.device).unsqueeze(0).repeat(H, 1)
|
760 |
+
w = w.repeat(1, T).pow(ind)
|
761 |
+
wk = w.reshape(H, 1, T)
|
762 |
+
wb = wk.transpose(-2, -1).flip(1)
|
763 |
+
w = torch.cat([w[:, 1:], u], dim=1)
|
764 |
+
w = F.pad(w, (0, T))
|
765 |
+
w = torch.tile(w, [T])
|
766 |
+
w = w[:, :-T].reshape(-1, T, 2 * T - 1)
|
767 |
+
w = w[:, :, T-1:].reshape(H, T, T)
|
768 |
+
|
769 |
+
r = matmul(rx, rw, rmx, rrx, rmy, rry, output_dtype=torch.float32).view(T, H, N).transpose(0, 1)
|
770 |
+
k = matmul(kx, kw, kmx, krx, kmy, kry, output_dtype=torch.float32).view(T, H, N).permute(1, 2, 0)
|
771 |
+
v = matmul(vx, vw, vmx, vrx, vmy, vry, output_dtype=torch.float32).view(T, H, N).transpose(0, 1)
|
772 |
+
g = F.silu(matmul(gx, gw, gmx, grx, gmy, gry))
|
773 |
+
|
774 |
+
out = ((r @ k) * w) @ v + (r @ s) * wb
|
775 |
+
s = ws * s + (k * wk) @ v
|
776 |
+
|
777 |
+
out = out.transpose(0, 1).contiguous().reshape(T, H*N)
|
778 |
+
out = F.group_norm(out, num_groups=H, weight=lx_w, bias=lx_b, eps = 64e-5)
|
779 |
+
out = out.to(dtype=x.dtype) * g
|
780 |
+
out = matmul(out, ow, omx, orx, omy, ory)
|
781 |
+
|
782 |
+
return x + out, xx[-1,:], s
|
783 |
+
|
784 |
+
########################################################################################################
|
785 |
+
|
786 |
+
@MyFunction
|
787 |
+
def att_seq_v5_2(self, x, sx, s, ln_w, ln_b, lx_w, lx_b, k_mix, v_mix, r_mix, g_mix, t_decay, t_first, kw, vw, rw, gw, ow, kmx, krx, kmy, kry, vmx, vrx, vmy, vry, rmx, rrx, rmy, rry, gmx, grx, gmy, gry, omx, orx, omy, ory):
|
788 |
+
xx = F.layer_norm(x, (x.shape[-1],), weight=ln_w, bias=ln_b)
|
789 |
+
sx = torch.cat((sx.unsqueeze(0), xx[:-1,:]))
|
790 |
+
kx = xx * k_mix + sx * (1 - k_mix)
|
791 |
+
vx = xx * v_mix + sx * (1 - v_mix)
|
792 |
+
rx = xx * r_mix + sx * (1 - r_mix)
|
793 |
+
gx = xx * g_mix + sx * (1 - g_mix)
|
794 |
+
|
795 |
+
H = t_decay.shape[0]
|
796 |
+
N = x.shape[-1] // H
|
797 |
+
T = x.shape[0]
|
798 |
+
|
799 |
+
r = matmul(rx, rw, rmx, rrx, rmy, rry, output_dtype=torch.float32).view(T, H, N).transpose(0, 1)
|
800 |
+
k = matmul(kx, kw, kmx, krx, kmy, kry, output_dtype=torch.float32).view(T, H, N).permute(1, 2, 0)
|
801 |
+
v = matmul(vx, vw, vmx, vrx, vmy, vry, output_dtype=torch.float32).view(T, H, N).transpose(0, 1)
|
802 |
+
g = F.silu(matmul(gx, gw, gmx, grx, gmy, gry))
|
803 |
+
|
804 |
+
out = torch.empty((T, H, N), dtype=r.dtype, device=r.device)
|
805 |
+
for t in range(T):
|
806 |
+
rt = r[:,t:t+1,:]
|
807 |
+
kt = k[:,:,t:t+1]
|
808 |
+
vt = v[:,t:t+1,:]
|
809 |
+
at = matmul(kt, vt)
|
810 |
+
out[t] = (rt @ (t_first * at + s)).squeeze(1)
|
811 |
+
s = at + t_decay * s
|
812 |
+
|
813 |
+
out = out.reshape(T, H*N)
|
814 |
+
out = F.group_norm(out, num_groups=H, weight=lx_w, bias=lx_b, eps = 64e-5)
|
815 |
+
out = out.to(dtype=x.dtype) * g
|
816 |
+
out = matmul(out, ow, omx, orx, omy, ory)
|
817 |
+
|
818 |
+
return x + out, xx[-1,:], s
|
819 |
+
|
820 |
+
########################################################################################################
|
821 |
+
|
822 |
+
@MyFunction
|
823 |
+
def att_one_v6_0(self, x, sx, s, ln_w, ln_b, lx_w, lx_b, x_maa, w_maa, k_maa, v_maa, r_maa, g_maa, tm_w1, tm_w2, td_w1, td_w2, t_decay, t_first, kw, vw, rw, gw, ow, kmx, krx, kmy, kry, vmx, vrx, vmy, vry, rmx, rrx, rmy, rry, gmx, grx, gmy, gry, omx, orx, omy, ory):
|
824 |
+
xx = F.layer_norm(x, (x.shape[-1],), weight=ln_w, bias=ln_b)
|
825 |
+
|
826 |
+
sx = sx - xx
|
827 |
+
xxx = xx + sx * x_maa
|
828 |
+
xxx = torch.tanh(xxx @ tm_w1).view(5, 1, -1)
|
829 |
+
xxx = torch.bmm(xxx, tm_w2).view(5, -1)
|
830 |
+
mw, mk, mv, mr, mg = xxx.unbind(dim=0)
|
831 |
+
|
832 |
+
wx = xx + sx * (w_maa + mw)
|
833 |
+
kx = xx + sx * (k_maa + mk)
|
834 |
+
vx = xx + sx * (v_maa + mv)
|
835 |
+
rx = xx + sx * (r_maa + mr)
|
836 |
+
gx = xx + sx * (g_maa + mg)
|
837 |
+
|
838 |
+
H = t_decay.shape[0]
|
839 |
+
N = x.shape[-1] // H
|
840 |
+
|
841 |
+
r = matmul(rx, rw, rmx, rrx, rmy, rry, output_dtype=torch.float32).view(H, 1, N)
|
842 |
+
k = matmul(kx, kw, kmx, krx, kmy, kry, output_dtype=torch.float32).view(H, N, 1)
|
843 |
+
v = matmul(vx, vw, vmx, vrx, vmy, vry, output_dtype=torch.float32).view(H, 1, N)
|
844 |
+
g = F.silu(matmul(gx, gw, gmx, grx, gmy, gry))
|
845 |
+
|
846 |
+
w = t_decay + (torch.tanh(wx @ td_w1) @ td_w2).float().view(H, N, 1)
|
847 |
+
w = torch.exp(-torch.exp(w.float()))
|
848 |
+
|
849 |
+
a = matmul(k, v)
|
850 |
+
out = r @ (t_first * a + s)
|
851 |
+
s = a + w * s
|
852 |
+
|
853 |
+
out = out.flatten()
|
854 |
+
out = F.group_norm(out.unsqueeze(0), num_groups=H, weight=lx_w, bias=lx_b, eps = 64e-5).squeeze(0)
|
855 |
+
out = out.to(dtype=x.dtype) * g
|
856 |
+
out = matmul(out, ow, omx, orx, omy, ory)
|
857 |
+
|
858 |
+
return x + out, xx, s
|
859 |
+
|
860 |
+
@MyFunction
|
861 |
+
def att_seq_v6_0(self, x, sx, s, ln_w, ln_b, lx_w, lx_b, x_maa, w_maa, k_maa, v_maa, r_maa, g_maa, tm_w1, tm_w2, td_w1, td_w2, t_decay, t_first, kw, vw, rw, gw, ow, kmx, krx, kmy, kry, vmx, vrx, vmy, vry, rmx, rrx, rmy, rry, gmx, grx, gmy, gry, omx, orx, omy, ory):
|
862 |
+
H = t_decay.shape[0]
|
863 |
+
N = x.shape[-1] // H
|
864 |
+
T = x.shape[0]
|
865 |
+
|
866 |
+
xx = F.layer_norm(x, (x.shape[-1],), weight=ln_w, bias=ln_b)
|
867 |
+
sx = torch.cat((sx.unsqueeze(0), xx[:-1,:])) - xx
|
868 |
+
xxx = xx + sx * x_maa
|
869 |
+
xxx = torch.tanh(xxx @ tm_w1).view(T, 5, -1).transpose(0, 1)
|
870 |
+
xxx = torch.bmm(xxx, tm_w2).view(5, T, -1)
|
871 |
+
mw, mk, mv, mr, mg = xxx.unbind(dim=0)
|
872 |
+
|
873 |
+
wx = xx + sx * (w_maa + mw)
|
874 |
+
kx = xx + sx * (k_maa + mk)
|
875 |
+
vx = xx + sx * (v_maa + mv)
|
876 |
+
rx = xx + sx * (r_maa + mr)
|
877 |
+
gx = xx + sx * (g_maa + mg)
|
878 |
+
|
879 |
+
r = matmul(rx, rw, rmx, rrx, rmy, rry, output_dtype=torch.float32).view(T, H, N).transpose(0, 1)
|
880 |
+
k = matmul(kx, kw, kmx, krx, kmy, kry, output_dtype=torch.float32).view(T, H, N).permute(1, 2, 0)
|
881 |
+
v = matmul(vx, vw, vmx, vrx, vmy, vry, output_dtype=torch.float32).view(T, H, N).transpose(0, 1)
|
882 |
+
g = F.silu(matmul(gx, gw, gmx, grx, gmy, gry))
|
883 |
+
|
884 |
+
w = t_decay.view(1, H, N, 1) + (torch.tanh(wx @ td_w1) @ td_w2).float().view(T, H, N, 1)
|
885 |
+
w = torch.exp(-torch.exp(w.float()))
|
886 |
+
out = torch.empty((T, H, N), dtype=r.dtype, device=r.device)
|
887 |
+
for t in range(T):
|
888 |
+
rt = r[:,t:t+1,:]
|
889 |
+
kt = k[:,:,t:t+1]
|
890 |
+
vt = v[:,t:t+1,:]
|
891 |
+
at = matmul(kt, vt)
|
892 |
+
out[t] = (rt @ (t_first * at + s)).squeeze(1)
|
893 |
+
s = at + w[t] * s
|
894 |
+
|
895 |
+
out = out.reshape(T, H*N)
|
896 |
+
out = F.group_norm(out, num_groups=H, weight=lx_w, bias=lx_b, eps = 64e-5)
|
897 |
+
out = out.to(dtype=x.dtype) * g
|
898 |
+
out = matmul(out, ow, omx, orx, omy, ory)
|
899 |
+
|
900 |
+
return x + out, xx[-1,:], s
|
901 |
+
|
902 |
+
########################################################################################################
|
903 |
+
|
904 |
+
if os.environ["RWKV_CUDA_ON"] == '1':
|
905 |
+
@MyFunction
|
906 |
+
def cuda_att_seq(self, x, sx, aa, bb, pp, ln_w, ln_b, k_mix, v_mix, r_mix, t_decay, t_first, kw, vw, rw, ow, kmx, krx, kmy, kry, vmx, vrx, vmy, vry, rmx, rrx, rmy, rry, omx, orx, omy, ory):
|
907 |
+
T, C = x.shape
|
908 |
+
xx = F.layer_norm(x, (C,), weight=ln_w, bias=ln_b)
|
909 |
+
sx = torch.cat((sx.unsqueeze(0), xx[:-1,:]))
|
910 |
+
kx = xx * k_mix + sx * (1 - k_mix)
|
911 |
+
vx = xx * v_mix + sx * (1 - v_mix)
|
912 |
+
rx = xx * r_mix + sx * (1 - r_mix)
|
913 |
+
|
914 |
+
r = torch.sigmoid(matmul(rx, rw, rmx, rrx, rmy, rry))
|
915 |
+
k = matmul(kx, kw, kmx, krx, kmy, kry, output_dtype=torch.float32)
|
916 |
+
v = matmul(vx, vw, vmx, vrx, vmy, vry, output_dtype=torch.float32)
|
917 |
+
y, aa, bb, pp = cuda_wkv(T, C, t_decay, t_first, k, v, aa, bb, pp)
|
918 |
+
|
919 |
+
out = matmul(r * y.to(x.dtype), ow, omx, orx, omy, ory)
|
920 |
+
return x + out, xx[-1,:], aa, bb, pp
|
921 |
+
|
922 |
+
@MyFunction
|
923 |
+
def v5_2_before(self, x, sx, s, ln_w, ln_b, lx_w, lx_b, k_mix, v_mix, r_mix, g_mix, t_decay, t_first, kw, vw, rw, gw, ow, kmx, krx, kmy, kry, vmx, vrx, vmy, vry, rmx, rrx, rmy, rry, gmx, grx, gmy, gry, omx, orx, omy, ory):
|
924 |
+
xx = F.layer_norm(x, (x.shape[-1],), weight=ln_w, bias=ln_b)
|
925 |
+
sx = torch.cat((sx.unsqueeze(0), xx[:-1,:]))
|
926 |
+
kx = xx * k_mix + sx * (1 - k_mix)
|
927 |
+
vx = xx * v_mix + sx * (1 - v_mix)
|
928 |
+
rx = xx * r_mix + sx * (1 - r_mix)
|
929 |
+
gx = xx * g_mix + sx * (1 - g_mix)
|
930 |
+
|
931 |
+
r = matmul(rx, rw, rmx, rrx, rmy, rry, output_dtype=torch.float32)
|
932 |
+
k = matmul(kx, kw, kmx, krx, kmy, kry, output_dtype=torch.float32)
|
933 |
+
v = matmul(vx, vw, vmx, vrx, vmy, vry, output_dtype=torch.float32)
|
934 |
+
g = F.silu(matmul(gx, gw, gmx, grx, gmy, gry))
|
935 |
+
|
936 |
+
return r, k, v, g, xx[-1,:], s.transpose(-1,-2).contiguous()
|
937 |
+
|
938 |
+
@MyFunction
|
939 |
+
def v5_2_after(self, t_decay, out, s, x, xxx, g, lx_w, lx_b, ow, omx, orx, omy, ory):
|
940 |
+
H = t_decay.shape[0]
|
941 |
+
N = x.shape[-1] // H
|
942 |
+
T = x.shape[0]
|
943 |
+
|
944 |
+
s = s.transpose(-1,-2)
|
945 |
+
out = out.reshape(T, H*N)
|
946 |
+
out = F.group_norm(out, num_groups=H, weight=lx_w, bias=lx_b, eps = 64e-5)
|
947 |
+
out = out.to(dtype=x.dtype) * g
|
948 |
+
out = matmul(out, ow, omx, orx, omy, ory)
|
949 |
+
|
950 |
+
return x + out, xxx, s
|
951 |
+
|
952 |
+
def cuda_att_seq_v5_2(self, x, sx, s, ln_w, ln_b, lx_w, lx_b, k_mix, v_mix, r_mix, g_mix, t_decay, t_first, kw, vw, rw, gw, ow, kmx, krx, kmy, kry, vmx, vrx, vmy, vry, rmx, rrx, rmy, rry, gmx, grx, gmy, gry, omx, orx, omy, ory):
|
953 |
+
H = t_decay.shape[0]
|
954 |
+
N = x.shape[-1] // H
|
955 |
+
T = x.shape[0]
|
956 |
+
|
957 |
+
r, k, v, g, xxx, ss = self.v5_2_before(x, sx, s, ln_w, ln_b, lx_w, lx_b, k_mix, v_mix, r_mix, g_mix, t_decay, t_first, kw, vw, rw, gw, ow, kmx, krx, kmy, kry, vmx, vrx, vmy, vry, rmx, rrx, rmy, rry, gmx, grx, gmy, gry, omx, orx, omy, ory)
|
958 |
+
|
959 |
+
out, s = self.RUN_RWKV_5(1, T, self.args.n_att, H, ss, r, k, v, w=t_decay, u=t_first)
|
960 |
+
|
961 |
+
return self.v5_2_after(t_decay, out, s, x, xxx, g, lx_w, lx_b, ow, omx, orx, omy, ory)
|
962 |
+
|
963 |
+
@MyFunction
|
964 |
+
def v6_0_before(self, x, sx, s, ln_w, ln_b, lx_w, lx_b, x_maa, w_maa, k_maa, v_maa, r_maa, g_maa, tm_w1, tm_w2, td_w1, td_w2, t_decay, t_first, kw, vw, rw, gw, ow, kmx, krx, kmy, kry, vmx, vrx, vmy, vry, rmx, rrx, rmy, rry, gmx, grx, gmy, gry, omx, orx, omy, ory):
|
965 |
+
H = t_decay.shape[0]
|
966 |
+
N = x.shape[-1] // H
|
967 |
+
T = x.shape[0]
|
968 |
+
|
969 |
+
xx = F.layer_norm(x, (x.shape[-1],), weight=ln_w, bias=ln_b)
|
970 |
+
sx = torch.cat((sx.unsqueeze(0), xx[:-1,:])) - xx
|
971 |
+
xxx = xx + sx * x_maa
|
972 |
+
xxx = torch.tanh(xxx @ tm_w1).view(T, 5, -1).transpose(0, 1)
|
973 |
+
xxx = torch.bmm(xxx, tm_w2).view(5, T, -1)
|
974 |
+
mw, mk, mv, mr, mg = xxx.unbind(dim=0)
|
975 |
+
|
976 |
+
wx = xx + sx * (w_maa + mw)
|
977 |
+
kx = xx + sx * (k_maa + mk)
|
978 |
+
vx = xx + sx * (v_maa + mv)
|
979 |
+
rx = xx + sx * (r_maa + mr)
|
980 |
+
gx = xx + sx * (g_maa + mg)
|
981 |
+
|
982 |
+
r = matmul(rx, rw, rmx, rrx, rmy, rry, output_dtype=torch.float32)
|
983 |
+
k = matmul(kx, kw, kmx, krx, kmy, kry, output_dtype=torch.float32)
|
984 |
+
v = matmul(vx, vw, vmx, vrx, vmy, vry, output_dtype=torch.float32)
|
985 |
+
g = F.silu(matmul(gx, gw, gmx, grx, gmy, gry))
|
986 |
+
|
987 |
+
w = t_decay.view(1, H, N, 1) + (torch.tanh(wx @ td_w1) @ td_w2).float().view(T, H, N, 1)
|
988 |
+
|
989 |
+
return r, k, v, g, w, xx[-1,:], s.transpose(-1,-2).contiguous()
|
990 |
+
|
991 |
+
def cuda_att_seq_v6_0(self, x, sx, s, ln_w, ln_b, lx_w, lx_b, x_maa, w_maa, k_maa, v_maa, r_maa, g_maa, tm_w1, tm_w2, td_w1, td_w2, t_decay, t_first, kw, vw, rw, gw, ow, kmx, krx, kmy, kry, vmx, vrx, vmy, vry, rmx, rrx, rmy, rry, gmx, grx, gmy, gry, omx, orx, omy, ory):
|
992 |
+
H = t_decay.shape[0]
|
993 |
+
N = x.shape[-1] // H
|
994 |
+
T = x.shape[0]
|
995 |
+
|
996 |
+
r, k, v, g, w, xxx, ss = self.v6_0_before(x, sx, s, ln_w, ln_b, lx_w, lx_b, x_maa, w_maa, k_maa, v_maa, r_maa, g_maa, tm_w1, tm_w2, td_w1, td_w2, t_decay, t_first, kw, vw, rw, gw, ow, kmx, krx, kmy, kry, vmx, vrx, vmy, vry, rmx, rrx, rmy, rry, gmx, grx, gmy, gry, omx, orx, omy, ory)
|
997 |
+
|
998 |
+
out, s = self.RUN_RWKV_6(1, T, self.args.n_att, H, ss, r, k, v, w=w, u=t_first)
|
999 |
+
return self.v5_2_after(t_decay, out, s, x, xxx, g, lx_w, lx_b, ow, omx, orx, omy, ory)
|
1000 |
+
|
1001 |
+
########################################################################################################
|
1002 |
+
|
1003 |
+
def forward(self, tokens=None, state=None, full_output=False, embs=None):
|
1004 |
+
with torch.no_grad():
|
1005 |
+
w = self.w
|
1006 |
+
args = self.args
|
1007 |
+
|
1008 |
+
if state == None:
|
1009 |
+
if self.version == 4:
|
1010 |
+
state = [None] * args.n_layer * 5
|
1011 |
+
for i in range(args.n_layer): # state: 0=att_xx 1=att_aa 2=att_bb 3=att_pp 4=ffn_xx
|
1012 |
+
dd = self.strategy[i]
|
1013 |
+
dev = dd.device
|
1014 |
+
atype = dd.atype
|
1015 |
+
state[i*5+0] = torch.zeros(args.n_embd, dtype=atype, requires_grad=False, device=dev).contiguous()
|
1016 |
+
state[i*5+1] = torch.zeros(args.n_att, dtype=torch.float, requires_grad=False, device=dev).contiguous()
|
1017 |
+
state[i*5+2] = torch.zeros(args.n_att, dtype=torch.float, requires_grad=False, device=dev).contiguous()
|
1018 |
+
state[i*5+3] = torch.zeros(args.n_att, dtype=torch.float, requires_grad=False, device=dev).contiguous() - 1e30
|
1019 |
+
state[i*5+4] = torch.zeros(args.n_embd, dtype=atype, requires_grad=False, device=dev).contiguous()
|
1020 |
+
elif int(self.version) in [5,6]:
|
1021 |
+
state = [None] * args.n_layer * 3
|
1022 |
+
for i in range(args.n_layer): # state: 0=att_xx 1=att_kv 2=ffn_xx
|
1023 |
+
dd = self.strategy[i]
|
1024 |
+
dev = dd.device
|
1025 |
+
atype = dd.atype
|
1026 |
+
state[i*3+0] = torch.zeros(args.n_embd, dtype=atype, requires_grad=False, device=dev).contiguous()
|
1027 |
+
state[i*3+1] = torch.zeros((args.n_head, args.n_att//args.n_head, args.n_att//args.n_head), dtype=torch.float, requires_grad=False, device=dev).contiguous()
|
1028 |
+
state[i*3+2] = torch.zeros(args.n_embd, dtype=atype, requires_grad=False, device=dev).contiguous()
|
1029 |
+
|
1030 |
+
if embs is None:
|
1031 |
+
seq_mode = len(tokens) > 1
|
1032 |
+
x = w['emb.weight'][tokens if seq_mode else tokens[0]]
|
1033 |
+
else:
|
1034 |
+
x = embs
|
1035 |
+
seq_mode = True
|
1036 |
+
|
1037 |
+
for i in range(args.n_layer):
|
1038 |
+
bbb = f'blocks.{i}.'
|
1039 |
+
att = f'blocks.{i}.att.'
|
1040 |
+
ffn = f'blocks.{i}.ffn.'
|
1041 |
+
dd = self.strategy[i]
|
1042 |
+
dev = dd.device
|
1043 |
+
atype = dd.atype
|
1044 |
+
wtype = dd.wtype
|
1045 |
+
if seq_mode:
|
1046 |
+
cuda_applicable = os.environ["RWKV_CUDA_ON"] == '1' and 'cuda' in str(dev)
|
1047 |
+
if cuda_applicable:
|
1048 |
+
ATT = self.cuda_att_seq
|
1049 |
+
else:
|
1050 |
+
ATT = self.att_seq
|
1051 |
+
if self.version == 5:
|
1052 |
+
ATT = self.att_seq_v5
|
1053 |
+
elif self.version == 5.1:
|
1054 |
+
ATT = self.att_seq_v5_1
|
1055 |
+
elif self.version == 5.2:
|
1056 |
+
ATT = self.att_seq_v5_2
|
1057 |
+
if cuda_applicable:
|
1058 |
+
ATT = self.cuda_att_seq_v5_2
|
1059 |
+
elif self.version == 6.0:
|
1060 |
+
ATT = self.att_seq_v6_0
|
1061 |
+
if cuda_applicable:
|
1062 |
+
ATT = self.cuda_att_seq_v6_0
|
1063 |
+
FFN = self.ffn_seq
|
1064 |
+
if self.version >= 6.0:
|
1065 |
+
FFN = self.ffn_seq_v6
|
1066 |
+
else:
|
1067 |
+
ATT = self.att_one
|
1068 |
+
if self.version == 5:
|
1069 |
+
ATT = self.att_one_v5
|
1070 |
+
elif self.version == 5.1:
|
1071 |
+
ATT = self.att_one_v5_1
|
1072 |
+
elif self.version == 5.2:
|
1073 |
+
ATT = self.att_one_v5_1 # same as v5.1
|
1074 |
+
elif self.version == 6.0:
|
1075 |
+
ATT = self.att_one_v6_0
|
1076 |
+
FFN = self.ffn_one
|
1077 |
+
if self.version >= 6.0:
|
1078 |
+
FFN = self.ffn_one_v6
|
1079 |
+
|
1080 |
+
x = x.to(dtype=atype, device=dev)
|
1081 |
+
|
1082 |
+
kw = w[f'{att}key.weight']
|
1083 |
+
vw = w[f'{att}value.weight']
|
1084 |
+
rw = w[f'{att}receptance.weight']
|
1085 |
+
ow = w[f'{att}output.weight']
|
1086 |
+
if dd.stream:
|
1087 |
+
kw = kw.to(device=dev, non_blocking=True)
|
1088 |
+
vw = vw.to(device=dev, non_blocking=True)
|
1089 |
+
rw = rw.to(device=dev, non_blocking=True)
|
1090 |
+
ow = ow.to(device=dev, non_blocking=True)
|
1091 |
+
kmx = w[f'{att}key.weight_mx'] if wtype == torch.uint8 else x
|
1092 |
+
krx = w[f'{att}key.weight_rx'] if wtype == torch.uint8 else x
|
1093 |
+
kmy = w[f'{att}key.weight_my'] if wtype == torch.uint8 else x
|
1094 |
+
kry = w[f'{att}key.weight_ry'] if wtype == torch.uint8 else x
|
1095 |
+
vmx = w[f'{att}value.weight_mx'] if wtype == torch.uint8 else x
|
1096 |
+
vrx = w[f'{att}value.weight_rx'] if wtype == torch.uint8 else x
|
1097 |
+
vmy = w[f'{att}value.weight_my'] if wtype == torch.uint8 else x
|
1098 |
+
vry = w[f'{att}value.weight_ry'] if wtype == torch.uint8 else x
|
1099 |
+
rmx = w[f'{att}receptance.weight_mx'] if wtype == torch.uint8 else x
|
1100 |
+
rrx = w[f'{att}receptance.weight_rx'] if wtype == torch.uint8 else x
|
1101 |
+
rmy = w[f'{att}receptance.weight_my'] if wtype == torch.uint8 else x
|
1102 |
+
rry = w[f'{att}receptance.weight_ry'] if wtype == torch.uint8 else x
|
1103 |
+
omx = w[f'{att}output.weight_mx'] if wtype == torch.uint8 else x
|
1104 |
+
orx = w[f'{att}output.weight_rx'] if wtype == torch.uint8 else x
|
1105 |
+
omy = w[f'{att}output.weight_my'] if wtype == torch.uint8 else x
|
1106 |
+
ory = w[f'{att}output.weight_ry'] if wtype == torch.uint8 else x
|
1107 |
+
if self.version in [5.1, 5.2, 6.0]:
|
1108 |
+
gw = w[f'{att}gate.weight']
|
1109 |
+
if dd.stream:
|
1110 |
+
gw = gw.to(device=dev, non_blocking=True)
|
1111 |
+
gmx = w[f'{att}gate.weight_mx'] if wtype == torch.uint8 else x
|
1112 |
+
grx = w[f'{att}gate.weight_rx'] if wtype == torch.uint8 else x
|
1113 |
+
gmy = w[f'{att}gate.weight_my'] if wtype == torch.uint8 else x
|
1114 |
+
gry = w[f'{att}gate.weight_ry'] if wtype == torch.uint8 else x
|
1115 |
+
if self.version == 4:
|
1116 |
+
x, state[i*5+0], state[i*5+1], state[i*5+2], state[i*5+3] = ATT(
|
1117 |
+
x, state[i*5+0], state[i*5+1], state[i*5+2], state[i*5+3],
|
1118 |
+
w[f'{bbb}ln1.weight'], w[f'{bbb}ln1.bias'],
|
1119 |
+
w[f'{att}time_mix_k'], w[f'{att}time_mix_v'], w[f'{att}time_mix_r'],
|
1120 |
+
w[f'{att}time_decay'], w[f'{att}time_first'],
|
1121 |
+
kw, vw, rw, ow,
|
1122 |
+
kmx, krx, kmy, kry,
|
1123 |
+
vmx, vrx, vmy, vry,
|
1124 |
+
rmx, rrx, rmy, rry,
|
1125 |
+
omx, orx, omy, ory,
|
1126 |
+
)
|
1127 |
+
elif self.version == 5:
|
1128 |
+
x, state[i*3+0], state[i*3+1] = ATT(
|
1129 |
+
x, state[i*3+0], state[i*3+1],
|
1130 |
+
w[f'{bbb}ln1.weight'], w[f'{bbb}ln1.bias'],
|
1131 |
+
w[f'{att}ln_x.weight'], w[f'{att}ln_x.bias'],
|
1132 |
+
w[f'{att}time_mix_k'], w[f'{att}time_mix_v'], w[f'{att}time_mix_r'],
|
1133 |
+
w[f'{att}time_decay'], w[f'{att}time_first'],
|
1134 |
+
kw, vw, rw, ow,
|
1135 |
+
kmx, krx, kmy, kry,
|
1136 |
+
vmx, vrx, vmy, vry,
|
1137 |
+
rmx, rrx, rmy, rry,
|
1138 |
+
omx, orx, omy, ory,
|
1139 |
+
)
|
1140 |
+
elif self.version in [5.1, 5.2]:
|
1141 |
+
x, state[i*3+0], state[i*3+1] = ATT(
|
1142 |
+
x, state[i*3+0], state[i*3+1],
|
1143 |
+
w[f'{bbb}ln1.weight'], w[f'{bbb}ln1.bias'],
|
1144 |
+
w[f'{att}ln_x.weight'], w[f'{att}ln_x.bias'],
|
1145 |
+
w[f'{att}time_mix_k'], w[f'{att}time_mix_v'], w[f'{att}time_mix_r'], w[f'{att}time_mix_g'],
|
1146 |
+
w[f'{att}time_decay'], w[f'{att}time_first'],
|
1147 |
+
kw, vw, rw, gw, ow,
|
1148 |
+
kmx, krx, kmy, kry,
|
1149 |
+
vmx, vrx, vmy, vry,
|
1150 |
+
rmx, rrx, rmy, rry,
|
1151 |
+
gmx, grx, gmy, gry,
|
1152 |
+
omx, orx, omy, ory,
|
1153 |
+
)
|
1154 |
+
elif self.version == 6.0:
|
1155 |
+
x, state[i*3+0], state[i*3+1] = ATT(
|
1156 |
+
x, state[i*3+0], state[i*3+1],
|
1157 |
+
w[f'{bbb}ln1.weight'], w[f'{bbb}ln1.bias'],
|
1158 |
+
w[f'{att}ln_x.weight'], w[f'{att}ln_x.bias'],
|
1159 |
+
w[f'{att}time_maa_x'], w[f'{att}time_maa_w'], w[f'{att}time_maa_k'], w[f'{att}time_maa_v'], w[f'{att}time_maa_r'], w[f'{att}time_maa_g'],
|
1160 |
+
w[f'{att}time_maa_w1'], w[f'{att}time_maa_w2'], w[f'{att}time_decay_w1'], w[f'{att}time_decay_w2'],
|
1161 |
+
w[f'{att}time_decay'], w[f'{att}time_first'],
|
1162 |
+
kw, vw, rw, gw, ow,
|
1163 |
+
kmx, krx, kmy, kry,
|
1164 |
+
vmx, vrx, vmy, vry,
|
1165 |
+
rmx, rrx, rmy, rry,
|
1166 |
+
gmx, grx, gmy, gry,
|
1167 |
+
omx, orx, omy, ory,
|
1168 |
+
)
|
1169 |
+
if dd.stream:
|
1170 |
+
del kw, vw, rw, ow
|
1171 |
+
if self.version in [5.1, 5.2, 6.0]:
|
1172 |
+
del gw
|
1173 |
+
|
1174 |
+
kw = w[f'{ffn}key.weight']
|
1175 |
+
vw = w[f'{ffn}value.weight']
|
1176 |
+
rw = w[f'{ffn}receptance.weight']
|
1177 |
+
if dd.stream:
|
1178 |
+
kw = kw.to(device=dev, non_blocking=True)
|
1179 |
+
vw = vw.to(device=dev, non_blocking=True)
|
1180 |
+
rw = rw.to(device=dev, non_blocking=True)
|
1181 |
+
kmx = w[f'{ffn}key.weight_mx'] if wtype == torch.uint8 else x
|
1182 |
+
krx = w[f'{ffn}key.weight_rx'] if wtype == torch.uint8 else x
|
1183 |
+
kmy = w[f'{ffn}key.weight_my'] if wtype == torch.uint8 else x
|
1184 |
+
kry = w[f'{ffn}key.weight_ry'] if wtype == torch.uint8 else x
|
1185 |
+
vmx = w[f'{ffn}value.weight_mx'] if wtype == torch.uint8 else x
|
1186 |
+
vrx = w[f'{ffn}value.weight_rx'] if wtype == torch.uint8 else x
|
1187 |
+
vmy = w[f'{ffn}value.weight_my'] if wtype == torch.uint8 else x
|
1188 |
+
vry = w[f'{ffn}value.weight_ry'] if wtype == torch.uint8 else x
|
1189 |
+
rmx = w[f'{ffn}receptance.weight_mx'] if wtype == torch.uint8 else x
|
1190 |
+
rrx = w[f'{ffn}receptance.weight_rx'] if wtype == torch.uint8 else x
|
1191 |
+
rmy = w[f'{ffn}receptance.weight_my'] if wtype == torch.uint8 else x
|
1192 |
+
rry = w[f'{ffn}receptance.weight_ry'] if wtype == torch.uint8 else x
|
1193 |
+
if self.version == 4:
|
1194 |
+
offset = i*5+4
|
1195 |
+
elif int(self.version) in [5,6]:
|
1196 |
+
offset = i*3+2
|
1197 |
+
if self.version < 6.0:
|
1198 |
+
x, state[offset] = FFN(
|
1199 |
+
x, state[offset],
|
1200 |
+
w[f'{bbb}ln2.weight'], w[f'{bbb}ln2.bias'],
|
1201 |
+
w[f'{ffn}time_mix_k'], w[f'{ffn}time_mix_r'],
|
1202 |
+
kw, vw, rw,
|
1203 |
+
kmx, krx, kmy, kry,
|
1204 |
+
vmx, vrx, vmy, vry,
|
1205 |
+
rmx, rrx, rmy, rry,
|
1206 |
+
)
|
1207 |
+
else:
|
1208 |
+
x, state[offset] = FFN(
|
1209 |
+
x, state[offset],
|
1210 |
+
w[f'{bbb}ln2.weight'], w[f'{bbb}ln2.bias'],
|
1211 |
+
w[f'{ffn}time_maa_k'], w[f'{ffn}time_maa_r'],
|
1212 |
+
kw, vw, rw,
|
1213 |
+
kmx, krx, kmy, kry,
|
1214 |
+
vmx, vrx, vmy, vry,
|
1215 |
+
rmx, rrx, rmy, rry,
|
1216 |
+
)
|
1217 |
+
if dd.stream:
|
1218 |
+
del kw, vw, rw
|
1219 |
+
|
1220 |
+
if self.RESCALE_LAYER > 0:
|
1221 |
+
if (i+1) % self.RESCALE_LAYER == 0:
|
1222 |
+
x = x / 2
|
1223 |
+
|
1224 |
+
dd = self.strategy[args.n_layer]
|
1225 |
+
x = x[-1,:] if (seq_mode and (not full_output)) else x
|
1226 |
+
x = x.to(dtype=dd.atype, device=dd.device)
|
1227 |
+
|
1228 |
+
x = F.layer_norm(x, (args.n_embd,), weight=w['ln_out.weight'], bias=w['ln_out.bias'])
|
1229 |
+
if w['head.weight'].dtype != torch.uint8:
|
1230 |
+
x = x @ w['head.weight']
|
1231 |
+
else:
|
1232 |
+
if seq_mode and full_output:
|
1233 |
+
x = mm8_seq(x, w['head.weight'], w['head.weight_mx'], w['head.weight_rx'], w['head.weight_my'], w['head.weight_ry'])
|
1234 |
+
else:
|
1235 |
+
x = mm8_one(x, w['head.weight'], w['head.weight_mx'], w['head.weight_rx'], w['head.weight_my'], w['head.weight_ry'])
|
1236 |
+
|
1237 |
+
return x.float(), state
|
modeling_vision.py
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import CLIPVisionModel
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
import torch.nn.functional as F
|
5 |
+
from dataclasses import dataclass
|
6 |
+
|
7 |
+
@dataclass
|
8 |
+
class VisionEncoderConfig:
|
9 |
+
n_embd: int = 2048
|
10 |
+
vision_tower_name: str = 'openai/clip-vit-large-patch14-336'
|
11 |
+
grid_size: int = -1 # -1: no grid pooling, 0: take cls token, 1: global avg pooling, 2, 3, 4, ...: grid pooling
|
12 |
+
|
13 |
+
class VisionEncoder(nn.Module):
|
14 |
+
def __init__(self, args):
|
15 |
+
super().__init__()
|
16 |
+
self.args = args
|
17 |
+
self.vit = CLIPVisionModel.from_pretrained(args.vision_tower_name)
|
18 |
+
self.proj = nn.Linear(self.vit.config.hidden_size, args.n_embd, bias=False)
|
19 |
+
|
20 |
+
def encode_images(self, images):
|
21 |
+
B, N, C, H, W = images.shape
|
22 |
+
images = images.view(B*N, C, H, W)
|
23 |
+
image_features = self.vit(images).last_hidden_state
|
24 |
+
L, D = image_features.shape[1], image_features.shape[2]
|
25 |
+
# rerange [B*N, L, D] -> [B, N, L, D]
|
26 |
+
image_features = image_features.view(B, N, L, D)[:, 0, :, :]
|
27 |
+
image_features = self.grid_pooling(image_features)
|
28 |
+
return self.proj(image_features)
|
29 |
+
|
30 |
+
def grid_pooling(self, image_features):
|
31 |
+
if self.args.grid_size == -1: # no grid pooling
|
32 |
+
return image_features
|
33 |
+
if self.args.grid_size == 0: # take cls token
|
34 |
+
return image_features[:, 0:1, :]
|
35 |
+
if self.args.grid_size == 1: # global avg pooling
|
36 |
+
return image_features.mean(dim=1, keepdim=True)
|
37 |
+
cls_features = image_features[:, 0:1, :]
|
38 |
+
image_features = image_features[:, 1:, :] #drop cls token
|
39 |
+
B, L, D = image_features.shape
|
40 |
+
H_or_W = int(L**0.5)
|
41 |
+
image_features = image_features.view(B, H_or_W, H_or_W, D)
|
42 |
+
grid_stride = H_or_W // self.args.grid_size
|
43 |
+
image_features = F.avg_pool2d(image_features.permute(0, 3, 1, 2),
|
44 |
+
padding=0,
|
45 |
+
kernel_size=grid_stride,
|
46 |
+
stride=grid_stride)
|
47 |
+
image_features = image_features.permute(0, 2, 3, 1).view(B, -1, D)
|
48 |
+
return torch.cat((cls_features, image_features), dim=1)
|
requirements.txt
CHANGED
@@ -1,8 +1,7 @@
|
|
1 |
-
gradio==3.28.1
|
2 |
torch
|
|
|
3 |
ninja
|
4 |
tokenizers
|
5 |
-
rwkv==0.8.
|
6 |
pynvml
|
7 |
-
huggingface_hub
|
8 |
-
gradio==3.28.1
|
|
|
|
|
1 |
torch
|
2 |
+
transformers
|
3 |
ninja
|
4 |
tokenizers
|
5 |
+
rwkv==0.8.22
|
6 |
pynvml
|
7 |
+
huggingface_hub
|
|