import gradio as gr
import os
from datetime import datetime
from huggingface_hub import hf_hub_download
from pynvml import *
nvmlInit()
gpu_h = nvmlDeviceGetHandleByIndex(0)
ctx_limit = 512
title = "RWKV-4 14B fp16"
desc = f'''DEMO limited to ctxlen {ctx_limit}, and slow because A10g does not have enough VRAM for 14B fp16 (some layers are computed on CPU instead). Links:
ChatRWKV
RWKV-LM
RWKV pip package
'''
os.environ["RWKV_JIT_ON"] = '1'
os.environ["RWKV_CUDA_ON"] = '1' # if '1' then use CUDA kernel for seq mode (much faster)
from rwkv.model import RWKV
model_path = hf_hub_download(repo_id="BlinkDL/rwkv-4-pile-14b", filename="RWKV-4-Pile-14B-20230213-8019.pth")
model = RWKV(model=model_path, strategy='cuda fp16 *32 -> cpu fp32')
# model_path = hf_hub_download(repo_id="BlinkDL/rwkv-4-pile-169m", filename="RWKV-4-Pile-169M-20220807-8023.pth")
# model = RWKV(model=model_path, strategy='cuda fp16')
from rwkv.utils import PIPELINE, PIPELINE_ARGS
pipeline = PIPELINE(model, "20B_tokenizer.json")
def infer(
ctx,
token_count=10,
temperature=1.0,
top_p=0.85,
presencePenalty = 0.1,
countPenalty = 0.1,
):
args = PIPELINE_ARGS(temperature = max(0.2, float(temperature)), top_p = float(top_p),
alpha_frequency = countPenalty,
alpha_presence = presencePenalty,
token_ban = [0], # ban the generation of some tokens
token_stop = []) # stop generation whenever you see any token here
ctx = ctx.strip(' ')
if ctx.endswith('\n'):
ctx = f'\n{ctx.strip()}\n'
else:
ctx = f'\n{ctx.strip()}'
gpu_info = nvmlDeviceGetMemoryInfo(gpu_h)
print(f'vram {gpu_info.total} used {gpu_info.used} free {gpu_info.free}')
all_tokens = []
out_last = 0
out_str = ''
occurrence = {}
state = None
for i in range(int(token_count)):
out, state = model.forward(pipeline.encode(ctx)[-ctx_limit:] if i == 0 else [token], state)
for n in args.token_ban:
out[n] = -float('inf')
for n in occurrence:
out[n] -= (args.alpha_presence + occurrence[n] * args.alpha_frequency)
token = pipeline.sample_logits(out, temperature=args.temperature, top_p=args.top_p)
if token in args.token_stop:
break
all_tokens += [token]
if token not in occurrence:
occurrence[token] = 1
else:
occurrence[token] += 1
tmp = pipeline.decode(all_tokens[out_last:])
if '\ufffd' not in tmp:
out_str += tmp
yield out_str.strip()
out_last = i + 1
yield out_str.strip()
examples = [
["Expert Questions & Helpful Answers\nAsk Research Experts\nQuestion:\nHow can we eliminate poverty?\n\nFull Answer:\n", 100, 1.0, 0.85, 0.1, 0.1],
["Ask Expert\n\nQuestion:\nWhat are some good plans for world peace?\n\nExpert Full Answer:\n", 100, 1.0, 0.85, 0.1, 0.1],
["Q & A\n\nQuestion:\nWhy is the sky blue?\n\nDetailed Expert Answer:\n", 100, 1.0, 0.85, 0.1, 0.1],
["Here is a shell script to find all .hpp files in /home/workspace and delete the 3th row string of these files:", 100, 1.0, 0.85, 0.1, 0.1],
["Building a website can be done in 10 simple steps:\n1.", 100, 1.0, 0.85, 0.1, 0.1],
["I believe the meaning of life is", 100, 1.0, 0.85, 0.1, 0.1],
["Simply put, the theory of relativity states that", 100, 1.0, 0.85, 0.1, 0.1],
]
iface = gr.Interface(
fn=infer,
description=f'''{desc}''',
allow_flagging="never",
inputs=[
gr.Textbox(lines=14, label="Prompt"), # prompt
gr.Slider(10, 200, step=10, value=100), # token_count
gr.Slider(0.2, 2.0, step=0.1, value=1.0), # temperature
gr.Slider(0.0, 1.0, step=0.05, value=0.85), # top_p
gr.Slider(0.0, 1.0, step=0.1, value=0.1), # presencePenalty
gr.Slider(0.0, 1.0, step=0.1, value=0.1), # countPenalty
],
outputs=gr.Textbox(label="Generated Output", lines=30),
examples=examples,
cache_examples=False,
).queue()
demo = gr.TabbedInterface(
[iface], ["Generative"],
title=title,
)
demo.queue()
demo.launch(share=False)