Zenne's picture
updated UI
19628eb
raw
history blame
8.66 kB
# Import required libraries
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.document_loaders import (
UnstructuredWordDocumentLoader,
PyMuPDFLoader,
UnstructuredFileLoader,
)
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.chat_models import ChatOpenAI
from langchain.vectorstores import Pinecone, Chroma
from langchain.chains import ConversationalRetrievalChain
import os
import pinecone
import streamlit as st
import shutil
OPENAI_API_KEY = ''
PINECONE_API_KEY = ''
PINECONE_API_ENV = ''
pinecone_index_name = ''
chroma_collection_name = ''
persist_directory = ''
chat_history = []
docsearch_ready = False
directory_name = 'tmp_docs'
def save_file(files):
# Remove existing files in the directory
if os.path.exists(directory_name):
for filename in os.listdir(directory_name):
file_path = os.path.join(directory_name, filename)
try:
if os.path.isfile(file_path):
os.remove(file_path)
except Exception as e:
print(f"Error: {e}")
# Save the new file with original filename
if files is not None:
for file in files:
file_name = file.name
file_path = os.path.join(directory_name, file_name)
with open(file_path, 'wb') as f:
shutil.copyfileobj(file, f)
def load_files():
file_path = "./tmp_docs/"
all_texts = []
n_files = 0
n_char = 0
n_texts = 0
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=400, chunk_overlap=50
)
for filename in os.listdir(directory_name):
file = os.path.join(directory_name, filename)
if os.path.isfile(file):
if file.endswith(".docx"):
loader = UnstructuredWordDocumentLoader(file)
elif file.endswith(".pdf"):
loader = PyMuPDFLoader(file)
else: # assume a pure text format and attempt to load it
loader = UnstructuredFileLoader(file)
data = loader.load()
texts = text_splitter.split_documents(data)
n_files += 1
n_char += len(data[0].page_content)
n_texts += len(texts)
all_texts.extend(texts)
st.write(
f"Loaded {n_files} file(s) with {n_char} characters, and split into {n_texts} split-documents."
)
return all_texts, n_texts
def ingest(all_texts, use_pinecone, embeddings, pinecone_index_name, chroma_collection_name, persist_directory):
if use_pinecone:
docsearch = Pinecone.from_texts(
[t.page_content for t in all_texts], embeddings, index_name=pinecone_index_name) # add namespace=pinecone_namespace if provided
else:
docsearch = Chroma.from_documents(
all_texts, embeddings, collection_name=chroma_collection_name, persist_directory=persist_directory)
return docsearch
def setup_retriever(docsearch, k):
retriever = docsearch.as_retriever(
search_type="similarity", search_kwargs={"k": k}, include_metadata=True)
return retriever
def setup_docsearch(use_pinecone, pinecone_index_name, embeddings, chroma_collection_name, persist_directory):
docsearch = []
n_texts = 0
if use_pinecone:
# Load the pre-created Pinecone index.
# The index which has already be stored in pinecone.io as long-term memory
if pinecone_index_name in pinecone.list_indexes():
docsearch = Pinecone.from_existing_index(
pinecone_index_name, embeddings) # add namespace=pinecone_namespace if provided
index_client = pinecone.Index(pinecone_index_name)
# Get the index information
index_info = index_client.describe_index_stats()
namespace_name = ''
n_texts = index_info['namespaces'][namespace_name]['vector_count']
else:
raise ValueError('''Cannot find the specified Pinecone index.
Create one in pinecone.io or using, e.g.,
pinecone.create_index(
name=index_name, dimension=1536, metric="cosine", shards=1)''')
else:
docsearch = Chroma(persist_directory=persist_directory, embedding_function=embeddings,
collection_name=chroma_collection_name)
n_texts = docsearch._client._count(
collection_name=chroma_collection_name)
return docsearch, n_texts
def get_response(query, chat_history):
result = CRqa({"question": query, "chat_history": chat_history})
return result['answer'], result['source_documents']
def setup_em_llm(OPENAI_API_KEY, temperature):
# Set up OpenAI embeddings
embeddings = OpenAIEmbeddings(openai_api_key=OPENAI_API_KEY)
# Use Open AI LLM with gpt-3.5-turbo.
# Set the temperature to be 0 if you do not want it to make up things
llm = ChatOpenAI(temperature=temperature, model_name="gpt-3.5-turbo", streaming=True,
openai_api_key=OPENAI_API_KEY)
return embeddings, llm
# Get user input of whether to use Pinecone or not
col1, col2, col3 = st.columns([1, 1, 1])
# create the radio buttons and text input fields
with col1:
r_pinecone = st.radio('Use Pinecone?', ('Yes', 'No'))
r_ingest = st.radio(
'Ingest file(s)?', ('Yes', 'No'))
with col2:
OPENAI_API_KEY = st.text_input(
"OpenAI API key:", type="password")
temperature = st.slider('Temperature', 0.0, 1.0, 0.1)
k_sources = st.slider('# source(s) to print out', 0, 20, 2)
with col3:
if OPENAI_API_KEY:
embeddings, llm = setup_em_llm(OPENAI_API_KEY, temperature)
if r_pinecone.lower() == 'yes':
use_pinecone = True
PINECONE_API_KEY = st.text_input(
"Pinecone API key:", type="password")
PINECONE_API_ENV = st.text_input(
"Pinecone API env:", type="password")
pinecone_index_name = st.text_input('Pinecone index:')
pinecone.init(api_key=PINECONE_API_KEY,
environment=PINECONE_API_ENV)
else:
use_pinecone = False
chroma_collection_name = st.text_input(
'''Chroma collection name of 3-63 characters:''')
persist_directory = "./vectorstore"
if pinecone_index_name or chroma_collection_name:
if r_ingest.lower() == 'yes':
files = st.file_uploader('Upload Files', accept_multiple_files=True)
if files:
save_file(files)
all_texts, n_texts = load_files()
docsearch = ingest(all_texts, use_pinecone, embeddings, pinecone_index_name,
chroma_collection_name, persist_directory)
docsearch_ready = True
else:
st.write(
'No data is to be ingested. Make sure the Pinecone index or Chroma collection name you provided contains data.')
docsearch, n_texts = setup_docsearch(use_pinecone, pinecone_index_name,
embeddings, chroma_collection_name, persist_directory)
docsearch_ready = True
if docsearch_ready:
# number of sources (split-documents when ingesting files); default is 4
k = min([20, n_texts])
retriever = setup_retriever(docsearch, k)
CRqa = ConversationalRetrievalChain.from_llm(
llm, retriever=retriever, return_source_documents=True)
st.title('Chatbot')
# Get user input
query = st.text_input('Enter your question; enter "exit" to exit')
if query:
# Generate a reply based on the user input and chat history
reply, source = get_response(query, chat_history)
# Update the chat history with the user input and system response
chat_history.append(('User', query))
chat_history.append(('Bot', reply))
chat_history_str = '\n'.join(
[f'{x[0]}: {x[1]}' for x in chat_history])
st.text_area('Chat record:', value=chat_history_str, height=250)
# Display sources
for i, source_i in enumerate(source):
if i < k_sources:
if len(source_i.page_content) > 400:
page_content = source_i.page_content[:400]
else:
page_content = source_i.page_content
if source_i.metadata:
metadata_source = source_i.metadata['source']
st.write(
f"**_Source {i+1}:_** {metadata_source}: {page_content}")
st.write(source_i.metadata)
else:
st.write(f"**_Source {i+1}:_** {page_content}")