Spaces:
Runtime error
Runtime error
import torch | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
from peft import AutoPeftModelForCausalLM | |
import gradio as gr | |
# Load the fine-tuned model and tokenizer | |
model_path = "BoburAmirov/test-llama-uz" # Adjust this to the path where your fine-tuned model is saved | |
model = AutoPeftModelForCausalLM.from_pretrained(model_path, device_map='auto') | |
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) | |
# Ensure the tokenizer settings match those used during training | |
tokenizer.pad_token = tokenizer.eos_token | |
tokenizer.padding_side = "right" | |
# Set the model to evaluation mode | |
model.eval() | |
def generate_text(input_prompt): | |
# Tokenize the input | |
input_ids = tokenizer(input_prompt, return_tensors="pt") | |
# Generate text | |
with torch.no_grad(): | |
output = model.generate( | |
input_ids, | |
max_length=400, # Adjust max_length as needed | |
num_return_sequences=1, | |
temperature=0.7, # Control randomness | |
top_p=0.9, # Control diversity | |
top_k=50, # Control diversity | |
) | |
# Decode the generated text | |
generated_text = tokenizer.decode(output[0], skip_special_tokens=True) | |
return generated_text | |
# Create a Gradio interface | |
iface = gr.Interface( | |
fn=generate_text, | |
inputs=gr.inputs.Textbox(lines=2, placeholder="Enter your prompt here..."), | |
outputs="text", | |
title="Text Generation with LLaMA", | |
description="Generate text using a fine-tuned LLaMA model." | |
) | |
if __name__ == "__main__": | |
iface.launch(server_name="0.0.0.0", server_port=7860) | |