Spaces:
Runtime error
Runtime error
File size: 6,873 Bytes
059d116 19d6a92 e56325d 19d6a92 2118e30 244876a 19d6a92 2118e30 4f7b1a6 19d6a92 69d9940 19d6a92 4f7b1a6 2118e30 5999146 2118e30 19d6a92 2118e30 19d6a92 5999146 19d6a92 2118e30 5999146 2118e30 19d6a92 00862bb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 |
import os
os.system("pip uninstall -y gradio")
os.system("pip install gradio==3.36.1")
import torch
import time
import gradio as gr
import yt_dlp as youtube_dl
from transformers import pipeline
from transformers.pipelines.audio_utils import ffmpeg_read
import tempfile
MODEL_NAME = "openai/whisper-large-v3"
BATCH_SIZE = 8
FILE_LIMIT_MB = 1000
YT_LENGTH_LIMIT_S = 3600 # limit to 1 hour YouTube files
device = 0 if torch.cuda.is_available() else "cpu"
pipe = pipeline(
task="automatic-speech-recognition",
model=MODEL_NAME,
chunk_length_s=30,
device=device,
)
def chunks_to_srt(chunks):
srt_format = ""
for i, chunk in enumerate(chunks, 1):
start_time, end_time = chunk['timestamp']
start_time_hms = "{:02}:{:02}:{:02},{:03}".format(int(start_time // 3600), int((start_time % 3600) // 60),
int(start_time % 60), int((start_time % 1) * 1000))
end_time_hms = "{:02}:{:02}:{:02},{:03}".format(int(end_time // 3600), int((end_time % 3600) // 60),
int(end_time % 60), int((end_time % 1) * 1000))
srt_format += f"{i}\n{start_time_hms} --> {end_time_hms}\n{chunk['text']}\n\n"
return srt_format
def transcribe(inputs, task, return_timestamps, language):
if inputs is None:
raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")
# Map the language names to their corresponding codes
language_codes = {"English": "en", "Uzbek": "uz"}
language_code = language_codes.get(language, "uz") # Default to "en" if the language is not found
result = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task, "language": f"<|{language_code}|>"},
return_timestamps=return_timestamps)
if return_timestamps:
return chunks_to_srt(result['chunks'])
else:
return result['text']
def _return_yt_html_embed(yt_url):
video_id = yt_url.split("?v=")[-1]
HTML_str = (
f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>'
" </center>"
)
return HTML_str
def download_yt_audio(yt_url, filename):
info_loader = youtube_dl.YoutubeDL()
try:
info = info_loader.extract_info(yt_url, download=False)
except youtube_dl.utils.DownloadError as err:
raise gr.Error(str(err))
file_length = info["duration_string"]
file_h_m_s = file_length.split(":")
file_h_m_s = [int(sub_length) for sub_length in file_h_m_s]
if len(file_h_m_s) == 1:
file_h_m_s.insert(0, 0)
if len(file_h_m_s) == 2:
file_h_m_s.insert(0, 0)
file_length_s = file_h_m_s[0] * 3600 + file_h_m_s[1] * 60 + file_h_m_s[2]
if file_length_s > YT_LENGTH_LIMIT_S:
yt_length_limit_hms = time.strftime("%HH:%MM:%SS", time.gmtime(YT_LENGTH_LIMIT_S))
file_length_hms = time.strftime("%HH:%MM:%SS", time.gmtime(file_length_s))
raise gr.Error(f"Maximum YouTube length is {yt_length_limit_hms}, got {file_length_hms} YouTube video.")
ydl_opts = {"outtmpl": filename, "format": "worstvideo[ext=mp4]+bestaudio[ext=m4a]/best[ext=mp4]/best"}
with youtube_dl.YoutubeDL(ydl_opts) as ydl:
try:
ydl.download([yt_url])
except youtube_dl.utils.ExtractorError as err:
raise gr.Error(str(err))
def yt_transcribe(yt_url, task, return_timestamps, language, max_filesize=75.0):
html_embed_str = _return_yt_html_embed(yt_url)
with tempfile.TemporaryDirectory() as tmpdirname:
filepath = os.path.join(tmpdirname, "video.mp4")
download_yt_audio(yt_url, filepath)
with open(filepath, "rb") as f:
inputs = f.read()
inputs = ffmpeg_read(inputs, pipe.feature_extractor.sampling_rate)
inputs = {"array": inputs, "sampling_rate": pipe.feature_extractor.sampling_rate}
# Map the language names to their corresponding codes
language_codes = {"English": "en", "Uzbek": "uz"}
language_code = language_codes.get(language, "uz") # Default to "en" if the language is not found
result = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task, "language": f"<|{language_code}|>"},
return_timestamps=return_timestamps)
if return_timestamps:
return html_embed_str, chunks_to_srt(result['chunks'])
else:
return html_embed_str, result['text']
demo = gr.Blocks()
print((gr.__version__), 'gradio version check')
mf_transcribe = gr.Interface(
fn=transcribe,
inputs=[
gr.inputs.Audio(source="microphone", type="filepath", optional=True),
gr.inputs.Radio(["transcribe", "translate"], label="Task", default="transcribe"),
gr.inputs.Checkbox(label="Return timestamps"),
gr.inputs.Dropdown(choices=["English", "Uzbek"], label="Language"),
],
outputs="text",
layout="horizontal",
theme="huggingface",
title="Whisper Large v3 Uzbek: Transcribe Audio",
description=(
"\n\n"
"<center>⭐️Brought to you by <a href='https://note.com/sangmin/n/n9813f2064a6a'>Chiomirai School</a>⭐️</center>"
),
allow_flagging="never",
)
file_transcribe = gr.Interface(
fn=transcribe,
inputs=[
gr.inputs.Audio(source="upload", type="filepath", optional=True, label="Audio file"),
gr.inputs.Radio(["transcribe", "translate"], label="Task", default="transcribe"),
gr.inputs.Checkbox(label="Return timestamps"),
gr.inputs.Dropdown(choices=["English", "Uzbek"], label="Language"),
],
outputs="text",
layout="horizontal",
theme="huggingface",
title="Whisper Large v3 Uzbek: Transcribe Audio File",
description=(
"\n\n"
"<center>⭐️Brought to you by <a href='https://note.com/sangmin/n/n9813f2064a6a'>Chiomirai School</a>⭐️</center>"
),
allow_flagging="never",
)
yt_transcribe = gr.Interface(
fn=yt_transcribe,
inputs=[
gr.inputs.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL"),
gr.inputs.Radio(["transcribe", "translate"], label="Task", default="transcribe"),
gr.inputs.Checkbox(label="Return timestamps"),
gr.inputs.Dropdown(choices=["English", "Uzbek"], label="Language"),
],
outputs=["html", "text"],
layout="horizontal",
theme="huggingface",
title="Whisper Large v3 Uzbek: Transcribe YouTube",
description=(
"\n\n"
"<center>⭐️Brought to you by <a href='https://note.com/sangmin/n/n9813f2064a6a'>Chiomirai School</a>⭐️</center>"
),
allow_flagging="never",
)
with demo:
gr.TabbedInterface([mf_transcribe, file_transcribe, yt_transcribe], ["Microphone", "Audio file", "YouTube"])
demo.launch(enable_queue=True)
|