import gradio as gr from sentence_transformers import SentenceTransformer from huggingface_hub import InferenceClient import pandas as pd import torch import math import httpcore setattr(httpcore, 'SyncHTTPTransport', 'AsyncHTTPProxy') """ For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference """ client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") def get_detailed_instruct(task_description: str, query: str) -> str: return f'Instruct: {task_description}\nQuery: {query}' def respond( message, history: list[tuple[str, str]], max_tokens = 2048, temperature = 0.7, top_p = 0.95, ): #system role messages = [{"role": "system", "content": "You are a moslem bot that always give answer based on quran and hadith!"}] #make a moslem bot messages.append({"role": "user", "content": "I want you to answer strictly based on quran and hadith"}) messages.append({"role": "assistant", "content": "I'd be happy to help! Please go ahead and provide the sentence you'd like me to analyze. Please specify whether you're referencing a particular verse or hadith (Prophetic tradition) from the Quran or Hadith, or if you're asking me to analyze a general statement."}) #adding references df = pd.read_csv("moslem-bot-reference.csv") for index, row in df.iterrows(): messages.append({"role": "user", "content": row['user']}) messages.append({"role": "assistant", "content": row['assistant']}) #adding more references selected_references = torch.load('selected_references.sav', map_location=torch.device('cpu')) encoded_questions = torch.load('encoded_questions.sav', map_location=torch.device('cpu')) task = 'Given a web search query, retrieve relevant passages that answer the query' queries = [ get_detailed_instruct(task, message) ] model = SentenceTransformer('intfloat/multilingual-e5-large-instruct') query_embeddings = model.encode(queries, convert_to_tensor=True, normalize_embeddings=True) scores = (query_embeddings @ encoded_questions.T) * 100 selected_references['similarity'] = scores.tolist()[0] sorted_references = selected_references.sort_values(by='similarity', ascending=False) sorted_references = sorted_references.head(3) sorted_references = selected_references.sort_values(by='similarity', ascending=True) from googletrans import Translator translator = Translator() for index, row in sorted_references.iterrows(): print(index) print(row['user']) user = translator.translate(row['user']) print(user) print(row['assistant']) assistant = translator.translate(row['assistant']) print(assistant) messages.append({"role": "user", "content":user }) messages.append({"role": "assistant", "content": assistant}) #history from chat session for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) #latest user question messages.append({"role": "user", "content": message}) print(messages) response = "" for message in client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): token = message.choices[0].delta.content response += token yield response """ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface """ demo = gr.ChatInterface( respond, additional_inputs=[ gr.Slider(minimum=1, maximum=2048, value=2048, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], examples=[ ["Why is men created?"], ["How is life after death?"], ["Please tell me about superstition!"], ["How moses defeat pharaoh?"], ["Please tell me about inheritance law in Islam!"], ["A woman not wear hijab"], ["Worshipping God beside Allah"], ["Blindly obey a person"], ["Make profit from lending money to a friend"], ], ) if __name__ == "__main__": demo.launch()