import os import platform import time import logging from fastapi import FastAPI, UploadFile, File import uvicorn import pytesseract import streamlit as st import pandas as pd from PIL import Image from typing import List from transformers import TableTransformerForObjectDetection, DetrFeatureExtractor from codes.table_recognition import TableRecognition from codes.table_detection import TableDetection from codes.table_preprocessing import TablePreprocessor from codes.data_extraction import TextDataExtraction from datatypes.config import Config, tesseract_config, model_config if platform.system() == 'Windows': pytesseract.pytesseract.tesseract_cmd = tesseract_config['tesseractpath'] # Table detection-recognition model loading function @st.cache_resource def load_models(): try: # models loading from local # detection_model = TableTransformerForObjectDetection.from_pretrained(model_config['detection_model_path']) # recognition_model = TableTransformerForObjectDetection.from_pretrained(model_config['recognition_model_path']) # models loading from hugginfacehub detection_model = TableTransformerForObjectDetection.from_pretrained("microsoft/table-transformer-detection") recognition_model = TableTransformerForObjectDetection.from_pretrained("microsoft/table-transformer-structure-recognition") return detection_model, recognition_model except: print('Table detection or recognition model loading is failed!!') # Models loading detection_model, recognition_model = load_models() # Detection feature extractor detection_feature_extractor = DetrFeatureExtractor(do_resize=True, size=800, max_size=800) # Recognition feature extractor recognition_feature_extractor = DetrFeatureExtractor(do_resize=True, size=1000, max_size=1000) # config values for the detection and recognition # Detection Object detection_obj = TableDetection(detection_feature_extractor, detection_model, threshold=Config['table_detection_threshold']) # Recognition Object recognition_obj = TableRecognition(recognition_feature_extractor, recognition_model, threshold=Config['table_recognition_threshold']) table_preprocessor = TablePreprocessor() textdataextractor = TextDataExtraction() # # Fast API the service if we need to install this as a microservice # app = FastAPI() # @app.get("/health") # def healthcheck(): # return "200" # @app.post('/table-data-extraction') # def table_data_extraction_from_image(file: UploadFile = File(...)): # if not (file.filename.split('.')[-1]).lower() in ("jpg", "jpeg", "png"): # return {'Image must be jpg or png format!'} # print(f'#---------- Table extractor started {time.strftime("%Y-%m-%d %H:%M:%S")} -----------#') # image = Image.open(file.file).convert('RGB') # detection_result = detection_obj.table_detection_from_image(image) # recognition_result = recognition_obj.table_recognition_from_detection(image, detection_result) # preprocessed_tables = table_preprocessor.table_structure_sorting(recognition_result) # exracted_table_data = textdataextractor.cell_data_extraction(image, preprocessed_tables) # print(f'#---------- Table extractor ended {time.strftime("%Y-%m-%d %H:%M:%S")} -----------#\n') # return exracted_table_data def convert_to_df(extracted_object): logging.info(f'#---------- Table visualization started {time.strftime("%Y-%m-%d %H:%M:%S")} -----------#') def _show_outputdf(table_list:List[List], table_number:int): op_df = pd.DataFrame(table_list) container.write(f'Extracted tabel: {table_number}') container.dataframe(op_df) container.write('\n') if len(extracted_object.tables) != 0: table_no = 1 for table in extracted_object.tables: table_list = [] for row in table.extracted_rows: row_list = [] for cell in row.extracted_cells: row_list.append(cell.value) table_list.append(row_list) _show_outputdf(table_list=table_list, table_number=table_no) table_no += 1 else: container.write('No tables are predicted!!!!') def table_data_extraction_from_image1(file): logging.info(f'#---------- Table extractor started {time.strftime("%Y-%m-%d %H:%M:%S")} -----------#') image = Image.open(file).convert('RGB') detection_result = detection_obj.table_detection_from_image(image) recognition_result = recognition_obj.table_recognition_from_detection(image, detection_result) preprocessed_tables = table_preprocessor.table_structure_sorting(recognition_result) exracted_table_data = textdataextractor.cell_data_extraction(image, preprocessed_tables) convert_to_df(exracted_table_data) logging.info((f'#---------- Table extractor ended {time.strftime("%Y-%m-%d %H:%M:%S")} -----------#\n')) return exracted_table_data if __name__ == '__main__': st.title('Table detection and recognition') st.write('Table data extraction application with help of microsoft detr models.') image = st.sidebar.file_uploader(label='Upload image file for data extraction', type=['png','jpg','jpeg','tif']) if image: result = st.sidebar.button(label='Predict', on_click=table_data_extraction_from_image1, args=(image,)) container = st.container() container.subheader('Extracted tables :snowflake:')