Spaces:
Runtime error
Runtime error
Commit
·
6be2a43
1
Parent(s):
a2982e9
Upload shred_model.py
Browse files- shred_model.py +109 -0
shred_model.py
ADDED
@@ -0,0 +1,109 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import tensorflow.keras as keras
|
2 |
+
import tensorflow as tf
|
3 |
+
|
4 |
+
import PIL.Image
|
5 |
+
import PIL.ImageOps
|
6 |
+
|
7 |
+
import numpy as np
|
8 |
+
|
9 |
+
IMG_SIZE = [256,256]
|
10 |
+
|
11 |
+
def prepare_image(path):
|
12 |
+
# Load the image with PIL
|
13 |
+
img = PIL.Image.open(path)
|
14 |
+
img, rotated = exif_transpose(img)
|
15 |
+
img = img.resize(IMG_SIZE)
|
16 |
+
return np.expand_dims(np.asarray(img), axis=0)
|
17 |
+
|
18 |
+
# def prepare_model(checkpoint_folder_path):
|
19 |
+
# base_model = keras.applications.EfficientNetB7(
|
20 |
+
# weights='imagenet',
|
21 |
+
# include_top=False,
|
22 |
+
# input_shape=tuple(IMG_SIZE + [3])
|
23 |
+
# )
|
24 |
+
# base_model.trainable = True
|
25 |
+
|
26 |
+
# model = keras.Sequential()
|
27 |
+
# model.add(keras.Input(shape=tuple(IMG_SIZE + [3])))
|
28 |
+
# model.add(keras.layers.RandomFlip("horizontal"))
|
29 |
+
# model.add(keras.layers.RandomRotation(0.1))
|
30 |
+
# model.add(base_model)
|
31 |
+
# model.add(keras.layers.GlobalMaxPooling2D())
|
32 |
+
# model.add(keras.layers.Dense(1, activation='sigmoid'))
|
33 |
+
|
34 |
+
# model.compile(optimizer=keras.optimizers.Adam(1e-5), # Low learning rate
|
35 |
+
# loss=keras.losses.BinaryCrossentropy(from_logits=False),
|
36 |
+
# metrics=[keras.metrics.BinaryAccuracy(), 'Precision', 'Recall',
|
37 |
+
# tf.keras.metrics.SpecificityAtSensitivity(.9)],)
|
38 |
+
# model.load_weights(checkpoint_folder_path)
|
39 |
+
# return model
|
40 |
+
|
41 |
+
def prepare_EfficientNet_model(base_trainable=False, fine_tuning=False):
|
42 |
+
base_model = keras.applications.EfficientNetB7(
|
43 |
+
weights="imagenet",
|
44 |
+
include_top=False,
|
45 |
+
input_shape=tuple(IMG_SIZE + [3])
|
46 |
+
)
|
47 |
+
base_model.trainable = False
|
48 |
+
|
49 |
+
model = keras.Sequential()
|
50 |
+
model.add(keras.Input(shape=tuple(IMG_SIZE + [3])))
|
51 |
+
model.add(keras.layers.RandomFlip("horizontal"))
|
52 |
+
model.add(keras.layers.RandomRotation(0.1))
|
53 |
+
model.add(base_model)
|
54 |
+
model.add(keras.layers.GlobalMaxPooling2D())
|
55 |
+
model.add(keras.layers.Dense(1, activation='sigmoid'))
|
56 |
+
|
57 |
+
if not fine_tuning:
|
58 |
+
if not base_trainable:
|
59 |
+
base_model.trainable = False
|
60 |
+
model.compile(optimizer=keras.optimizers.Adam(),
|
61 |
+
loss=keras.losses.BinaryCrossentropy(from_logits=False),
|
62 |
+
metrics=[keras.metrics.BinaryAccuracy(), 'Precision', 'Recall'],)
|
63 |
+
else:
|
64 |
+
base_model.trainable = True
|
65 |
+
model.compile(optimizer=keras.optimizers.Adam(1e-5), # Low learning rate
|
66 |
+
loss=keras.losses.BinaryCrossentropy(from_logits=False),
|
67 |
+
metrics=[keras.metrics.BinaryAccuracy(), 'Precision', 'Recall',
|
68 |
+
tf.keras.metrics.SpecificityAtSensitivity(.9)],)
|
69 |
+
return model
|
70 |
+
|
71 |
+
def exif_transpose(img):
|
72 |
+
if not img:
|
73 |
+
return img
|
74 |
+
|
75 |
+
exif_orientation_tag = 274
|
76 |
+
|
77 |
+
# Check for EXIF data (only present on some files)
|
78 |
+
if hasattr(img, "_getexif") and isinstance(img._getexif(), dict) and exif_orientation_tag in img._getexif():
|
79 |
+
exif_data = img._getexif()
|
80 |
+
orientation = exif_data[exif_orientation_tag]
|
81 |
+
|
82 |
+
# Handle EXIF Orientation
|
83 |
+
if orientation == 1:
|
84 |
+
# Normal image - nothing to do!
|
85 |
+
pass
|
86 |
+
elif orientation == 2:
|
87 |
+
# Mirrored left to right
|
88 |
+
img = img.transpose(PIL.Image.FLIP_LEFT_RIGHT)
|
89 |
+
elif orientation == 3:
|
90 |
+
# Rotated 180 degrees
|
91 |
+
img = img.rotate(180)
|
92 |
+
elif orientation == 4:
|
93 |
+
# Mirrored top to bottom
|
94 |
+
img = img.rotate(180).transpose(PIL.Image.FLIP_LEFT_RIGHT)
|
95 |
+
elif orientation == 5:
|
96 |
+
# Mirrored along top-left diagonal
|
97 |
+
img = img.rotate(-90, expand=True).transpose(PIL.Image.FLIP_LEFT_RIGHT)
|
98 |
+
elif orientation == 6:
|
99 |
+
# Rotated 90 degrees
|
100 |
+
img = img.rotate(-90, expand=True)
|
101 |
+
elif orientation == 7:
|
102 |
+
# Mirrored along top-right diagonal
|
103 |
+
img = img.rotate(90, expand=True).transpose(PIL.Image.FLIP_LEFT_RIGHT)
|
104 |
+
elif orientation == 8:
|
105 |
+
# Rotated 270 degrees
|
106 |
+
img = img.rotate(90, expand=True)
|
107 |
+
return img, True
|
108 |
+
return img, False
|
109 |
+
|