Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,101 +1,129 @@
|
|
1 |
import gradio as gr
|
2 |
-
import numpy as np
|
3 |
-
import torch
|
4 |
-
from transformers import pipeline
|
5 |
import librosa
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
device=self.device
|
14 |
-
)
|
15 |
-
self.target_sr = 16000 # Model's required sample rate
|
16 |
-
self.max_duration = 6 # Optimal duration for this model
|
17 |
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
audio_array = audio_array[:max_samples]
|
43 |
-
|
44 |
-
# Run inference
|
45 |
-
results = self.model({
|
46 |
-
"array": audio_array,
|
47 |
-
"sampling_rate": self.target_sr
|
48 |
-
})
|
49 |
-
|
50 |
-
# Format output
|
51 |
-
output_text = "\n".join(
|
52 |
-
[f"{res['label']}: {res['score']*100:.1f}%"
|
53 |
-
for res in results]
|
54 |
-
)
|
55 |
-
plot_data = {
|
56 |
-
"labels": [res["label"] for res in results],
|
57 |
-
"scores": [res["score"]*100 for res in results]
|
58 |
-
}
|
59 |
-
|
60 |
-
return output_text, plot_data
|
61 |
-
|
62 |
-
except Exception as e:
|
63 |
-
return f"Error: {str(e)}", None
|
64 |
|
65 |
-
def
|
66 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
type="numpy",
|
77 |
-
label="Input Audio"
|
78 |
-
)
|
79 |
-
analyze_btn = gr.Button("Analyze Emotion", variant="primary")
|
80 |
-
|
81 |
-
with gr.Column():
|
82 |
-
output_text = gr.Textbox(label="Emotion Results", lines=4)
|
83 |
-
output_plot = gr.BarPlot(
|
84 |
-
x="labels",
|
85 |
-
y="scores",
|
86 |
-
title="Emotion Distribution",
|
87 |
-
color="labels",
|
88 |
-
height=300
|
89 |
-
)
|
90 |
-
|
91 |
-
analyze_btn.click(
|
92 |
-
fn=recognizer.process_audio,
|
93 |
-
inputs=audio_input,
|
94 |
-
outputs=[output_text, output_plot]
|
95 |
-
)
|
96 |
|
97 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
|
99 |
if __name__ == "__main__":
|
100 |
-
|
101 |
-
demo.launch()
|
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
2 |
import librosa
|
3 |
+
import numpy as np
|
4 |
+
import os
|
5 |
+
import tempfile
|
6 |
+
from collections import Counter
|
7 |
+
from speechbrain.inference.interfaces import foreign_class
|
8 |
+
|
9 |
+
# Load the pre-trained SpeechBrain classifier (Emotion Recognition with wav2vec2 on IEMOCAP)
|
10 |
+
classifier = foreign_class(
|
11 |
+
source="speechbrain/emotion-recognition-wav2vec2-IEMOCAP",
|
12 |
+
pymodule_file="custom_interface.py",
|
13 |
+
classname="CustomEncoderWav2vec2Classifier",
|
14 |
+
run_opts={"device": "cpu"} # Change to {"device": "cuda"} if GPU is available
|
15 |
+
)
|
16 |
|
17 |
+
# Try to import noisereduce (if not available, noise reduction will be skipped)
|
18 |
+
try:
|
19 |
+
import noisereduce as nr
|
20 |
+
NOISEREDUCE_AVAILABLE = True
|
21 |
+
except ImportError:
|
22 |
+
NOISEREDUCE_AVAILABLE = False
|
|
|
|
|
|
|
|
|
23 |
|
24 |
+
def preprocess_audio(audio_file, apply_noise_reduction=False):
|
25 |
+
"""
|
26 |
+
Load and preprocess the audio file:
|
27 |
+
- Convert to 16kHz mono.
|
28 |
+
- Optionally apply noise reduction.
|
29 |
+
- Normalize the audio.
|
30 |
+
The processed audio is saved to a temporary file and its path is returned.
|
31 |
+
"""
|
32 |
+
# Load audio (resampled to 16kHz and in mono)
|
33 |
+
y, sr = librosa.load(audio_file, sr=16000, mono=True)
|
34 |
+
|
35 |
+
# Apply noise reduction if requested and available
|
36 |
+
if apply_noise_reduction and NOISEREDUCE_AVAILABLE:
|
37 |
+
y = nr.reduce_noise(y=y, sr=sr)
|
38 |
+
|
39 |
+
# Normalize the audio (scale to -1 to 1)
|
40 |
+
if np.max(np.abs(y)) > 0:
|
41 |
+
y = y / np.max(np.abs(y))
|
42 |
+
|
43 |
+
# Write the preprocessed audio to a temporary WAV file
|
44 |
+
temp_file = tempfile.NamedTemporaryFile(suffix=".wav", delete=False)
|
45 |
+
import soundfile as sf
|
46 |
+
sf.write(temp_file.name, y, sr)
|
47 |
+
return temp_file.name
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
|
49 |
+
def ensemble_prediction(audio_file, apply_noise_reduction=False, segment_duration=3.0, overlap=1.0):
|
50 |
+
"""
|
51 |
+
For audio files longer than a given segment duration, split the file into overlapping segments,
|
52 |
+
predict the emotion for each segment, and then return the majority-voted label.
|
53 |
+
"""
|
54 |
+
# Load audio
|
55 |
+
y, sr = librosa.load(audio_file, sr=16000, mono=True)
|
56 |
+
total_duration = librosa.get_duration(y=y, sr=sr)
|
57 |
+
|
58 |
+
# If the audio is short, just process it directly
|
59 |
+
if total_duration <= segment_duration:
|
60 |
+
temp_file = preprocess_audio(audio_file, apply_noise_reduction)
|
61 |
+
_, _, _, label = classifier.classify_file(temp_file)
|
62 |
+
os.remove(temp_file)
|
63 |
+
return label
|
64 |
+
|
65 |
+
# Split the audio into overlapping segments
|
66 |
+
step = segment_duration - overlap
|
67 |
+
segments = []
|
68 |
+
for start in np.arange(0, total_duration - segment_duration + 0.001, step):
|
69 |
+
start_sample = int(start * sr)
|
70 |
+
end_sample = int((start + segment_duration) * sr)
|
71 |
+
segment_audio = y[start_sample:end_sample]
|
72 |
+
# Save the segment as a temporary file
|
73 |
+
temp_seg = tempfile.NamedTemporaryFile(suffix=".wav", delete=False)
|
74 |
+
import soundfile as sf
|
75 |
+
sf.write(temp_seg.name, segment_audio, sr)
|
76 |
+
segments.append(temp_seg.name)
|
77 |
|
78 |
+
# Process each segment and collect predictions
|
79 |
+
predictions = []
|
80 |
+
for seg in segments:
|
81 |
+
temp_file = preprocess_audio(seg, apply_noise_reduction)
|
82 |
+
_, _, _, label = classifier.classify_file(temp_file)
|
83 |
+
predictions.append(label)
|
84 |
+
os.remove(temp_file)
|
85 |
+
os.remove(seg)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
|
87 |
+
# Determine the final label via majority vote
|
88 |
+
vote = Counter(predictions)
|
89 |
+
most_common = vote.most_common(1)[0][0]
|
90 |
+
return most_common
|
91 |
+
|
92 |
+
def predict_emotion(audio_file, use_ensemble=False, apply_noise_reduction=False):
|
93 |
+
"""
|
94 |
+
Main prediction function.
|
95 |
+
- If use_ensemble is True, the audio is split into segments and ensemble prediction is used.
|
96 |
+
- Otherwise, the audio is processed as a whole.
|
97 |
+
"""
|
98 |
+
try:
|
99 |
+
if use_ensemble:
|
100 |
+
label = ensemble_prediction(audio_file, apply_noise_reduction)
|
101 |
+
else:
|
102 |
+
temp_file = preprocess_audio(audio_file, apply_noise_reduction)
|
103 |
+
_, _, _, label = classifier.classify_file(temp_file)
|
104 |
+
os.remove(temp_file)
|
105 |
+
return label
|
106 |
+
except Exception as e:
|
107 |
+
return f"Error processing file: {str(e)}"
|
108 |
+
|
109 |
+
# Define the Gradio interface with additional options for ensemble prediction and noise reduction
|
110 |
+
iface = gr.Interface(
|
111 |
+
fn=predict_emotion,
|
112 |
+
inputs=[
|
113 |
+
gr.Audio(type="filepath", label="Upload Audio"),
|
114 |
+
gr.Checkbox(label="Use Ensemble Prediction (for long audio)", value=False),
|
115 |
+
gr.Checkbox(label="Apply Noise Reduction", value=False)
|
116 |
+
],
|
117 |
+
outputs="text",
|
118 |
+
title="Enhanced Emotion Recognition",
|
119 |
+
description=(
|
120 |
+
"Upload an audio file (expected 16kHz, mono) and the model will predict the emotion "
|
121 |
+
"using a wav2vec2 model fine-tuned on IEMOCAP data.\n\n"
|
122 |
+
"Options:\n"
|
123 |
+
" - Use Ensemble Prediction: For long audio, the file is split into segments and predictions are aggregated.\n"
|
124 |
+
" - Apply Noise Reduction: Applies a noise reduction filter before classification (requires noisereduce library)."
|
125 |
+
)
|
126 |
+
)
|
127 |
|
128 |
if __name__ == "__main__":
|
129 |
+
iface.launch()
|
|