Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,168 +1,53 @@
|
|
1 |
import gradio as gr
|
2 |
-
|
3 |
-
import torch
|
4 |
-
from transformers import AutoModelForAudioClassification, AutoFeatureExtractor
|
5 |
-
import librosa
|
6 |
-
import os
|
7 |
-
import warnings
|
8 |
-
warnings.filterwarnings("ignore")
|
9 |
|
10 |
-
|
11 |
-
|
12 |
-
# Initialize the model and feature extractor
|
13 |
-
self.model_name = "ehcalabres/wav2vec2-lg-xlsr-en-speech-emotion-recognition"
|
14 |
-
self.model = AutoModelForAudioClassification.from_pretrained(self.model_name)
|
15 |
-
self.feature_extractor = AutoFeatureExtractor.from_pretrained(self.model_name)
|
16 |
-
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
17 |
-
self.model.to(self.device)
|
18 |
-
self.sample_rate = 16000
|
19 |
-
|
20 |
-
# Define emotion labels
|
21 |
-
self.labels = ['angry', 'happy', 'sad', 'neutral', 'fearful']
|
22 |
-
|
23 |
-
def process_audio(self, audio):
|
24 |
-
"""Process audio and return emotions with confidence scores"""
|
25 |
-
try:
|
26 |
-
# Check if audio is a tuple (new Gradio audio format)
|
27 |
-
if isinstance(audio, tuple):
|
28 |
-
sample_rate, audio_data = audio
|
29 |
-
else:
|
30 |
-
return "Error: Invalid audio format", None
|
31 |
-
|
32 |
-
# Resample if necessary
|
33 |
-
if sample_rate != self.sample_rate:
|
34 |
-
audio_data = librosa.resample(audio_data, orig_sr=sample_rate, target_sr=self.sample_rate)
|
35 |
-
|
36 |
-
# Convert to float32 if not already
|
37 |
-
audio_data = audio_data.astype(np.float32)
|
38 |
-
|
39 |
-
# Extract features
|
40 |
-
inputs = self.feature_extractor(
|
41 |
-
audio_data,
|
42 |
-
sampling_rate=self.sample_rate,
|
43 |
-
return_tensors="pt",
|
44 |
-
padding=True
|
45 |
-
).to(self.device)
|
46 |
-
|
47 |
-
# Get model predictions
|
48 |
-
with torch.no_grad():
|
49 |
-
outputs = self.model(**inputs)
|
50 |
-
predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)
|
51 |
-
|
52 |
-
# Process results
|
53 |
-
scores = predictions[0].cpu().numpy()
|
54 |
-
results = [
|
55 |
-
{"label": label, "score": float(score)}
|
56 |
-
for label, score in zip(self.labels, scores)
|
57 |
-
]
|
58 |
-
|
59 |
-
# Sort by confidence
|
60 |
-
results.sort(key=lambda x: x["score"], reverse=True)
|
61 |
|
62 |
-
|
63 |
-
|
64 |
-
output_text += "\n".join([
|
65 |
-
f"{result['label'].title()}: {result['score']*100:.2f}%"
|
66 |
-
for result in results
|
67 |
-
])
|
68 |
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
return output_text, plot_data
|
76 |
-
|
77 |
-
except Exception as e:
|
78 |
-
return f"Error processing audio: {str(e)}", None
|
79 |
-
|
80 |
-
def create_interface():
|
81 |
-
# Initialize the emotion recognizer
|
82 |
-
recognizer = EmotionRecognizer()
|
83 |
-
|
84 |
-
# Define processing function for Gradio
|
85 |
-
def process_audio_file(audio):
|
86 |
-
if audio is None:
|
87 |
-
return "Please provide an audio input.", None
|
88 |
-
|
89 |
-
output_text, plot_data = recognizer.process_audio(audio)
|
90 |
-
|
91 |
-
if plot_data is not None:
|
92 |
-
return (
|
93 |
-
output_text,
|
94 |
-
gr.BarPlot.update(
|
95 |
-
value=plot_data,
|
96 |
-
x="labels",
|
97 |
-
y="values",
|
98 |
-
title="Emotion Confidence Scores",
|
99 |
-
x_title="Emotions",
|
100 |
-
y_title="Confidence (%)"
|
101 |
-
)
|
102 |
-
)
|
103 |
-
return output_text, None
|
104 |
-
|
105 |
-
# Create the Gradio interface
|
106 |
-
with gr.Blocks(title="Audio Emotion Recognition") as interface:
|
107 |
-
gr.Markdown("# 🎭 Audio Emotion Recognition")
|
108 |
-
gr.Markdown("""
|
109 |
-
Upload an audio file or record directly to analyze the emotional content.
|
110 |
-
The model will detect emotions like angry, happy, sad, neutral, and fearful.
|
111 |
-
""")
|
112 |
-
|
113 |
-
with gr.Row():
|
114 |
-
with gr.Column():
|
115 |
-
# Input audio component (updated format)
|
116 |
-
audio_input = gr.Audio(
|
117 |
-
label="Upload or Record Audio",
|
118 |
-
type="numpy",
|
119 |
-
sources=["microphone", "upload"]
|
120 |
-
)
|
121 |
-
|
122 |
-
# Process button
|
123 |
-
process_btn = gr.Button("Analyze Emotion", variant="primary")
|
124 |
-
|
125 |
-
with gr.Column():
|
126 |
-
# Output components
|
127 |
-
output_text = gr.Textbox(
|
128 |
-
label="Analysis Results",
|
129 |
-
lines=6
|
130 |
-
)
|
131 |
-
output_plot = gr.BarPlot(
|
132 |
-
title="Emotion Confidence Scores",
|
133 |
-
x_title="Emotions",
|
134 |
-
y_title="Confidence (%)"
|
135 |
-
)
|
136 |
|
137 |
-
#
|
138 |
-
|
139 |
-
fn=process_audio_file,
|
140 |
-
inputs=[audio_input],
|
141 |
-
outputs=[output_text, output_plot]
|
142 |
-
)
|
143 |
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
)
|
166 |
|
167 |
-
|
168 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import pipeline
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
+
# Load Whisper for speech-to-text
|
5 |
+
whisper = pipeline("automatic-speech-recognition", model="openai/whisper-medium")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
+
# Load a sentiment analysis model
|
8 |
+
sentiment_analyzer = pipeline("sentiment-analysis", model="cardiffnlp/twitter-roberta-base-sentiment")
|
|
|
|
|
|
|
|
|
9 |
|
10 |
+
# Function to process audio and analyze tone
|
11 |
+
def analyze_call(audio_file):
|
12 |
+
try:
|
13 |
+
# Step 1: Transcribe audio to text using Whisper
|
14 |
+
transcription = whisper(audio_file)["text"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
+
# Step 2: Analyze sentiment of the transcription
|
17 |
+
sentiment_result = sentiment_analyzer(transcription)[0]
|
|
|
|
|
|
|
|
|
18 |
|
19 |
+
# Prepare the output
|
20 |
+
output = {
|
21 |
+
"transcription": transcription,
|
22 |
+
"sentiment": sentiment_result["label"],
|
23 |
+
"confidence": round(sentiment_result["score"], 4)
|
24 |
+
}
|
25 |
+
return output
|
26 |
+
except Exception as e:
|
27 |
+
return {"error": str(e)}
|
28 |
+
|
29 |
+
# Gradio Interface
|
30 |
+
def gradio_interface(audio):
|
31 |
+
if audio is None:
|
32 |
+
return "Please record or upload an audio file."
|
33 |
+
result = analyze_call(audio)
|
34 |
+
if "error" in result:
|
35 |
+
return f"Error: {result['error']}"
|
36 |
+
return (
|
37 |
+
f"**Transcription:** {result['transcription']}\n\n"
|
38 |
+
f"**Sentiment:** {result['sentiment']}\n\n"
|
39 |
+
f"**Confidence:** {result['confidence']}"
|
40 |
)
|
41 |
|
42 |
+
# Create Gradio app
|
43 |
+
interface = gr.Interface(
|
44 |
+
fn=gradio_interface,
|
45 |
+
inputs=gr.Audio(type="filepath", label="Record or Upload Audio"),
|
46 |
+
outputs=gr.Textbox(label="Analysis Result", lines=5),
|
47 |
+
title="Real-Time Call Analysis",
|
48 |
+
description="Record or upload audio to analyze tone and sentiment in real time.",
|
49 |
+
live=False # Set to False to avoid constant re-runs
|
50 |
+
)
|
51 |
+
|
52 |
+
# Launch the app
|
53 |
+
interface.launch()
|