File size: 5,397 Bytes
8b414b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
import os
from pathlib import Path
from typing import Union

import pandas as pd
import torch.cuda
from catboost import CatBoostRegressor
from catboost.utils import get_gpu_device_count
from easydict import EasyDict as edict

from src.cross_validate import CrossValidation
from src.feature_extractors.bert_pretrain_extractor import \
    ManyBertPretrainFeatureExtractor
from src.feature_extractors.text_statistics_extractor import \
    HandcraftedTextFeatureExtractor
from src.solutions.base_solution import BaseSolution
from src.solutions.constant_predictor import load_train_test_df
from src.spell_checker import SmartSpellChecker
from src.text_preprocessings.spellcheck_preprocessing import \
    SpellcheckTextPreprocessor
from src.utils import get_x_columns, seed_everything, validate_x, validate_y

seed_everything()

spellcheck = SmartSpellChecker()


class ManyBertWithHandcraftedFeaturePredictor(BaseSolution):

    def __init__(
        self,
        model_names: list,
        catboost_iter: int,
        saving_dir: str,
    ):
        super(ManyBertWithHandcraftedFeaturePredictor, self).__init__()

        self.feature_extractor = HandcraftedTextFeatureExtractor(spellcheck)
        self.text_preprocessing = SpellcheckTextPreprocessor(spellcheck)
        self.berts = ManyBertPretrainFeatureExtractor(model_names=model_names)

        self.device = 'GPU' if torch.cuda.is_available() else None
        self.task_type = 'GPU' if get_gpu_device_count() > 0 else 'CPU'

        # classification model for each column
        self.columns = ['cohesion', 'syntax', 'vocabulary', 'phraseology', 'grammar', 'conventions']
        self.models = [
            CatBoostRegressor(
                iterations=catboost_iter,
                task_type=self.task_type,
                verbose=True,
            ) for _ in range(len(self.columns))
        ]

    def transform_data(self, X: pd.Series) -> pd.DataFrame:
        cleaned_text = self.text_preprocessing.preprocess_data(X)
        bert_features = self.berts.generate_features(cleaned_text)
        handcrafted_features = self.feature_extractor.generate_features(X)
        features_df = pd.concat([bert_features, handcrafted_features], axis='columns')
        return features_df

    def fit(self, X: pd.DataFrame, y: pd.DataFrame, **kwargs) -> None:
        validate_x(X)
        validate_y(y)

        features_df = self.transform_data(X.full_text)

        for ii, column in enumerate(self.columns):
            print(f"-> Training model on: {column}...")
            model = self.models[ii]
            target = y[column]
            torch.cuda.empty_cache()
            model.fit(X=features_df, y=target)
            torch.cuda.empty_cache()

    def predict(self, X: pd.DataFrame) -> pd.DataFrame:
        validate_x(X)

        features_df = self.transform_data(X.full_text)

        prediction = {}
        for ii, column in enumerate(self.columns):
            print(f"-> Predicting model on: {column}")
            model = self.models[ii]
            prediction[column] = model.predict(features_df)

        y_pred = pd.DataFrame(prediction, index=X.index)
        y_pred['text_id'] = X.text_id

        return y_pred

    def save(self, directory: Union[str, Path]) -> None:
        directory = Path(directory)
        if not directory.exists():
            directory.mkdir(parents=True)

        for ii, model in enumerate(self.models):
            column = self.columns[ii]
            path = directory / f'catboost_{column}.cbm'
            model.save_model(str(path))

    def load(self, directory: Union[str, Path]) -> None:
        directory = Path(directory)
        if not directory.is_dir():
            raise OSError(f"Dir. {directory.absolute()} does not exist")

        for ii, model in enumerate(self.models):
            column = self.columns[ii]
            path = directory / f'catboost_{column}.cbm'
            model.load_model(str(path))


def main():
    config = edict(
        dict(
            model_names=[
                'bert-base-uncased',
                'bert-base-cased',
                'vblagoje/bert-english-uncased-finetuned-pos',
                'bert-base-multilingual-cased',
                'unitary/toxic-bert',
                'bert-large-uncased'
            ],
            catboost_iter=5000,
            n_splits=5,
            saving_dir='checkpoints/ManyBertWithHandcraftedFeaturePredictor',
        )
    )

    train_df, test_df = load_train_test_df()

    x_columns = get_x_columns()
    train_x, train_y = train_df[x_columns], train_df.drop(columns=['full_text'])

    predictor = ManyBertWithHandcraftedFeaturePredictor(
        model_names=config.model_names,
        catboost_iter=config.catboost_iter,
        saving_dir=config.saving_dir,
    )
    cv = CrossValidation(saving_dir=config.saving_dir, n_splits=config.n_splits)

    results = cv.fit(predictor, train_x, train_y)
    print("CV results")
    print(results)

    print(f"CV mean: {results.iloc[len(results) - 1].mean()}")

    cv.save(config.saving_dir)

    submission_df = cv.predict(test_df)
    submission_path = os.path.join(config.saving_dir, "submission.csv")
    submission_df.to_csv(submission_path, index=False)

    cv_results_path = os.path.join(config.saving_dir, "cv_results.csv")
    results.to_csv(cv_results_path)

    print("Finished training!")


if __name__ == '__main__':
    main()