Spaces:
Runtime error
Runtime error
File size: 22,551 Bytes
bdab1da |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 |
from inspect import getargs
import logging
import os
import random
from datetime import datetime
import bisect
import copy
import numpy as np
import torch
import torch.backends.cudnn as cudnn
from torch import optim
from torch.cuda.amp import GradScaler
import faulthandler
import pathlib
try:
import wandb
except ImportError:
wandb = None
try:
import torch.utils.tensorboard as tensorboard
except ImportError:
tensorboard = None
try:
import horovod.torch as hvd
except ImportError:
hvd = None
from open_clip import create_model_and_transforms, trace_model, create_model
from training.data import get_data
from training.distributed import is_master, init_distributed_device, world_info_from_env
from training.logger import setup_logging
from training.params import parse_args
from training.scheduler import cosine_lr
from training.train import train_one_epoch, evaluate
from open_clip.utils import dataset_split, get_optimizer
def maintain_ckpts(args, startidx, all_idx_len):
for i in reversed(range(startidx, all_idx_len)):
if os.path.exists(os.path.join(args.checkpoint_path, f"epoch_top_{i}.pt")):
os.rename(
os.path.join(args.checkpoint_path, f"epoch_top_{i}.pt"),
os.path.join(args.checkpoint_path, f"epoch_top_{i+1}.pt"),
)
if os.path.exists(
os.path.join(args.checkpoint_path, f"epoch_top_{all_idx_len}.pt")
):
os.remove(os.path.join(args.checkpoint_path, f"epoch_top_{all_idx_len}.pt"))
return
def update_top_k_performance(
new_metrics_inputs, current_top_k_ckpt_metrics, args, ckpt, bignumbetter=True
):
"""
Record the top-k performance of the current epoch.
current_top_k_metrics is a dictionary of the form: {1: top_1_ckpt_measure, 2: top_2_ckpt_measure, ...}
"""
if isinstance(new_metrics_inputs, (list, tuple)):
new_metrics_inputs = np.mean(new_metrics_inputs)
return update_top_k_performance(
new_metrics_inputs,
current_top_k_ckpt_metrics,
args=args,
ckpt=ckpt,
bignumbetter=bignumbetter,
)
elif isinstance(new_metrics_inputs, dict):
new_metrics_inputs = np.mean(list(new_metrics_inputs.values()))
return update_top_k_performance(
new_metrics_inputs,
current_top_k_ckpt_metrics,
args=args,
ckpt=ckpt,
bignumbetter=bignumbetter,
)
elif isinstance(new_metrics_inputs, (float, int)):
update_flag = {k: False for k in current_top_k_ckpt_metrics.keys()}
sorted_keys = sorted(current_top_k_ckpt_metrics.keys())
sorted_values = sorted(
current_top_k_ckpt_metrics.values(), reverse=bignumbetter
)
sorted_values_ = copy.deepcopy(sorted_values)
sorted_values.append(new_metrics_inputs)
sorted_values = sorted(sorted_values, reverse=bignumbetter)
sorted_values = sorted_values[:-1]
if sorted_values == sorted_values_:
return current_top_k_ckpt_metrics, new_metrics_inputs
else:
for i in range(len(sorted_keys)):
if current_top_k_ckpt_metrics[sorted_keys[i]] != sorted_values[i]:
current_top_k_ckpt_metrics[sorted_keys[i]] = sorted_values[i]
update_flag[sorted_keys[i]] = True
for i in range(len(update_flag)):
if update_flag[i]:
maintain_ckpts(args, i, len(sorted_keys))
torch.save(
ckpt,
os.path.join(args.checkpoint_path, f"epoch_top_{i}.pt"),
)
break
return current_top_k_ckpt_metrics, new_metrics_inputs
# def updateifNone(a, b):
# a = b if None else a
# return a
def is_pretrained_params(n):
return (
n.startswith("transformer")
or n in ["positional_embedding", "text_projection"]
or n.startswith("token_embedding")
or n.startswith("ln_final")
or n.startswith("logit_scale_t")
)
def random_seed(seed=42, rank=0):
torch.manual_seed(seed + rank)
np.random.seed(seed + rank)
random.seed(seed + rank)
def main():
args = parse_args()
# sanitize model name for filesystem / uri use, easier if we don't use / in name as a rule?
args.amodel = args.amodel.replace("/", "-")
# download sizes.json file
# (yusong): the below two lines are for debug
# print("setting up faulthandler")
# faulthandler.register(10)
random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
torch.cuda.manual_seed_all(args.seed)
np.random.seed(args.seed)
if args.tmodel == "bert" or args.tmodel == "roberta" or args.tmodel == "bart":
assert (
args.pretrained == "" or args.pretrained is None
), "bert/roberta/bart text encoder does not support pretrained models."
# get the name of the experiments
if args.name is None:
args.name = "-".join(
[
datetime.now().strftime("%Y_%m_%d-%H_%M_%S"),
f"model_{args.amodel}",
f"lr_{args.lr}",
f"b_{args.batch_size}",
f"j_{args.workers}",
f"p_{args.precision}",
]
)
# discover initial world args early so we can log properly
args.distributed = False
args.local_rank, args.rank, args.world_size = world_info_from_env()
if args.remotedata and is_master(args):
for dataset_name in args.datasetnames:
for split in dataset_split[dataset_name]:
if not os.path.exists(f"./json_files/{dataset_name}/{split}"):
os.makedirs(f"./json_files/{dataset_name}/{split}")
os.system(
f"aws s3 cp s3://s-laion-audio/webdataset_tar/{dataset_name}/{split}/sizes.json ./json_files/{dataset_name}/{split}/sizes.json"
)
args.log_path = None
if is_master(args, local=args.log_local):
log_base_path = os.path.join(args.logs, args.name)
os.makedirs(log_base_path, exist_ok=True)
log_filename = f"out-{args.rank}" if args.log_local else "out.log"
args.log_path = os.path.join(log_base_path, log_filename)
if os.path.exists(args.log_path):
print(
"Error. Experiment already exists. Use --name {} to specify a new experiment."
)
return -1
# Set logger
args.log_level = logging.DEBUG if args.debug else logging.INFO
setup_logging(args.log_path, args.log_level)
# fully initialize distributed device environment
device = init_distributed_device(args)
args.wandb = "wandb" in args.report_to or "all" in args.report_to
args.tensorboard = "tensorboard" in args.report_to or "all" in args.report_to
if is_master(args):
args.tensorboard_path = (
os.path.join(args.logs, args.name, "tensorboard")
if args.tensorboard
else ""
)
args.checkpoint_path = os.path.join(args.logs, args.name, "checkpoints")
for dirname in [args.tensorboard_path, args.checkpoint_path]:
if dirname:
os.makedirs(dirname, exist_ok=True)
else:
args.tensorboard_path = ""
args.checkpoint_path = ""
if args.copy_codebase:
copy_codebase(args)
assert args.precision in ["amp", "fp16", "fp32"]
if args.precision == "fp16":
logging.warning(
"It is recommended to use AMP mixed-precision instead of FP16. "
"FP16 support needs further verification and tuning, especially for train."
)
if args.horovod:
logging.info(
f"Running in horovod mode with multiple processes / nodes. Device: {args.device}."
f"Process (global: {args.rank}, local {args.local_rank}), total {args.world_size}."
)
elif args.distributed:
logging.info(
f"Running in distributed mode with multiple processes. Device: {args.device}."
f"Process (global: {args.rank}, local {args.local_rank}), total {args.world_size}."
)
else:
logging.info(f"Running with a single process. Device {args.device}.")
logging.info(f"openai cache dir: {os.path.expanduser(args.openai_model_cache_dir)}")
model, model_cfg = create_model(
args.amodel,
args.tmodel,
args.pretrained,
precision=args.precision,
device=device,
jit=args.torchscript,
force_quick_gelu=args.force_quick_gelu,
openai_model_cache_dir=os.path.expanduser(args.openai_model_cache_dir),
skip_params=True,
pretrained_audio=args.pretrained_audio,
pretrained_text=args.pretrained_text,
enable_fusion=args.enable_fusion,
fusion_type=args.fusion_type,
)
if args.horovod:
with torch.no_grad():
for param in model.parameters():
param.set_(param.contiguous())
if args.trace:
model = trace_model(model, batch_size=args.batch_size, device=device)
if is_master(args):
logging.info("Model:")
logging.info(f"{str(model)}")
logging.info("Params:")
params_file = os.path.join(args.logs, args.name, "params.txt")
with open(params_file, "w") as f:
for name in sorted(vars(args)):
val = getattr(args, name)
logging.info(f" {name}: {val}")
f.write(f"{name}: {val}\n")
if args.distributed and not args.horovod:
if args.use_bn_sync:
model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model)
ddp_args = {}
if args.ddp_static_graph:
# this doesn't exist in older PyTorch, arg only added if enabled
ddp_args["static_graph"] = True
model = torch.nn.parallel.DistributedDataParallel(
model, device_ids=[device], find_unused_parameters=True, **ddp_args
)
data = get_data(args, model_cfg)
assert len(data), "At least one train or eval dataset must be specified."
if args.trace:
assert "train" not in data, "Cannot train with traced model"
exclude = (
lambda n, p: p.ndim < 2
or "bn" in n
or "ln" in n
or "bias" in n
or "logit_scale" in n
)
include = lambda n, p: not exclude(n, p)
named_parameters = list(model.named_parameters())
# freeze text encoder
text_freeze_parameters = [p for n, p in named_parameters if "text_branch" in n]
if args.freeze_text:
print("Freeze Text!!!!")
for k in text_freeze_parameters:
k.requires_grad = False
gain_or_bias_params = [
p for n, p in named_parameters if exclude(n, p) and p.requires_grad
]
rest_params = [p for n, p in named_parameters if include(n, p) and p.requires_grad]
# set wd-related params to 0 if use adam optimizer
if args.optimizer == "adam":
args.wd = 0
args.wd_pretrained = 0
args.wd_new = 0
if args.train_data is None:
optimizer = None
scheduler = None
else:
total_steps = data["train"].dataloader.num_batches * args.epochs
if args.split_opt:
for x in ["lr", "beta1", "beta2", "eps", "wd"]:
for y in ["_new", "_pretrained"]:
if getattr(args, x + y) is None:
setattr(args, x + y, getattr(args, x))
gain_or_bias_pretrained_params = [
p
for n, p in named_parameters
if (exclude(n, p) and p.requires_grad) and is_pretrained_params(n)
]
rest_pretrained_params = [
p
for n, p in named_parameters
if (include(n, p) and p.requires_grad) and is_pretrained_params(n)
]
gain_or_bias_new_params = [
p
for n, p in named_parameters
if (exclude(n, p) and p.requires_grad) and (not is_pretrained_params(n))
]
rest_new_params = [
p
for n, p in named_parameters
if (include(n, p) and p.requires_grad) and (not is_pretrained_params(n))
]
pretrained_params_optimizer = get_optimizer(
[
{"params": gain_or_bias_pretrained_params, "weight_decay": 0.0},
{
"params": rest_pretrained_params,
"weight_decay": args.wd_pretrained,
},
],
lr=args.lr_pretrained,
betas=(args.beta1_pretrained, args.beta2_pretrained),
eps=args.eps_pretrained,
momentum=args.momentum_pretrained,
optimizer_name=args.optimizer,
)
pretrained_params_scheduler = cosine_lr(
pretrained_params_optimizer,
args.lr_pretrained,
args.warmup,
total_steps,
)
new_params_optimizer = get_optimizer(
[
{"params": gain_or_bias_new_params, "weight_decay": 0.0},
{"params": rest_new_params, "weight_decay": args.wd_new},
],
lr=args.lr_new,
betas=(args.beta1_new, args.beta2_new),
eps=args.eps_new,
momentum=args.momentum_new,
optimizer_name=args.optimizer,
)
new_params_scheduler = cosine_lr(
new_params_optimizer, args.lr_new, args.warmup, total_steps
)
optimizer = {
"pretrained": pretrained_params_optimizer,
"new": new_params_optimizer,
}
scheduler = {
"pretrained": pretrained_params_scheduler,
"new": new_params_scheduler,
}
if args.horovod:
pretrained_params_optimizer = hvd.DistributedOptimizer(
pretrained_params_optimizer,
named_parameters=model.named_parameters(),
)
new_params_optimizer = hvd.DistributedOptimizer(
new_params_optimizer, named_parameters=model.named_parameters()
)
hvd.broadcast_parameters(model.state_dict(), root_rank=0)
hvd.broadcast_optimizer_state(pretrained_params_optimizer, root_rank=0)
hvd.broadcast_optimizer_state(new_params_optimizer, root_rank=0)
else:
optimizer = get_optimizer(
[
{"params": gain_or_bias_params, "weight_decay": 0.0},
{"params": rest_params, "weight_decay": args.wd},
],
lr=args.lr,
betas=(args.beta1, args.beta2),
eps=args.eps,
momentum=args.momentum,
optimizer_name=args.optimizer,
)
scheduler = cosine_lr(optimizer, args.lr, args.warmup, total_steps)
if args.horovod:
optimizer = hvd.DistributedOptimizer(
optimizer, named_parameters=model.named_parameters()
)
hvd.broadcast_parameters(model.state_dict(), root_rank=0)
hvd.broadcast_optimizer_state(optimizer, root_rank=0)
scaler = GradScaler() if args.precision == "amp" else None
# optionally resume from a checkpoint
start_epoch = 0
if args.resume is not None:
if os.path.isfile(args.resume):
checkpoint = torch.load(args.resume, map_location=device)
if "epoch" in checkpoint:
# resuming a train checkpoint w/ epoch and optimizer state
start_epoch = checkpoint["epoch"]
sd = checkpoint["state_dict"]
if not args.distributed and next(iter(sd.items()))[0].startswith(
"module"
):
sd = {k[len("module.") :]: v for k, v in sd.items()}
model.load_state_dict(sd)
if args.split_opt:
if optimizer is not None:
for k, o_ in optimizer.items():
o_.load_state_dict(checkpoint[k + "_" + "optimizer"])
if optimizer is not None:
optimizer.load_state_dict(checkpoint["optimizer"])
if scaler is not None and "scaler" in checkpoint:
scaler.load_state_dict(checkpoint["scaler"])
logging.info(
f"=> resuming checkpoint '{args.resume}' (epoch {start_epoch})"
)
else:
# loading a bare (model only) checkpoint for fine-tune or evaluation
model.load_state_dict(checkpoint)
logging.info(
f"=> loaded checkpoint '{args.resume}' (epoch {start_epoch})"
)
if args.freeze_text:
print("Freeze Text!!!!")
for k in text_freeze_parameters:
k.requires_grad = False
else:
logging.info("=> no checkpoint found at '{}'".format(args.resume))
cudnn.benchmark = True
cudnn.deterministic = False
# determine if this worker should save logs and checkpoints. only do so if it is rank == 0
args.save_logs = args.logs and args.logs.lower() != "none" and is_master(args)
writer = None
if args.save_logs and args.tensorboard:
assert tensorboard is not None, "Please install tensorboard."
writer = tensorboard.SummaryWriter(args.tensorboard_path)
if args.wandb and is_master(args):
assert wandb is not None, "Please install wandb."
logging.debug("Starting wandb.")
args.train_sz = data["train"].dataloader.num_samples
if args.val_data is not None:
args.val_sz = data["val"].dataloader.num_samples
# you will have to configure this for your project!
wandb.init(
project="clap",
notes=args.wandb_notes,
name=args.wandb_notes,
tags=[],
config=vars(args),
)
if args.debug:
wandb.watch(model, log="all")
wandb.save(params_file)
logging.debug("Finished loading wandb.")
if "train" not in data:
evaluate(model, data, start_epoch, args, writer)
return
elif start_epoch == 0 and "val" in data and not args.no_eval:
evaluate(model, data, 0, args, writer)
# print(f'rank {args.rank}, Start First Evaluation')# (yusong): for debug
if args.save_top_performance:
current_top_k_ckpt_metrics = {
i: 0 for i in range(args.save_top_performance)
} # initialize the top-k metric for ckpts to 0
# print(f'rank {args.rank}, Start Training') # (yusong): for debug
for epoch in range(start_epoch, args.epochs):
# freeze the text param after (include) args.freeze_text_after, this is -1 by default
if epoch == args.freeze_text_after:
print("Text pretrained parameters are freezed since this epoch.")
for k in text_freeze_parameters:
k.requires_grad = False
if is_master(args):
logging.info(f"Start epoch {epoch}")
train_one_epoch(model, data, epoch, optimizer, scaler, scheduler, args, writer)
completed_epoch = epoch + 1
if (
any(v in data for v in ("val", "imagenet-val", "imagenet-v2"))
and not args.no_eval
):
metrics = evaluate(model, data, completed_epoch, args, writer)
if args.save_top_performance:
top_k_dataset = args.top_k_checkpoint_select_dataset
top_k_metric = args.top_k_checkpoint_select_metric
filtered_metrics = [
v
for k, v in metrics.items()
if top_k_metric in k and top_k_dataset in k
] # check all R@10 metrics (all dataset) and use it to update the ckpt
# Saving checkpoints.
if args.save_logs:
if args.split_opt:
opt_dict = {
k + "_" + "optimizer": v.state_dict() for k, v in optimizer.items()
}
else:
opt_dict = {"optimizer": optimizer.state_dict()}
checkpoint_dict = {
"epoch": completed_epoch,
"name": args.name,
"state_dict": model.state_dict(),
}
checkpoint_dict.update(opt_dict)
if scaler is not None:
checkpoint_dict["scaler"] = scaler.state_dict()
if completed_epoch == args.epochs or (
args.save_frequency > 0 and (completed_epoch % args.save_frequency) == 0
):
torch.save(
checkpoint_dict,
os.path.join(args.checkpoint_path, f"epoch_{completed_epoch}.pt"),
)
if args.save_most_recent:
torch.save(
checkpoint_dict,
os.path.join(args.checkpoint_path, f"epoch_latest.pt"),
)
if args.save_top_performance and not args.no_eval:
update_top_k_performance(
filtered_metrics,
current_top_k_ckpt_metrics,
args,
checkpoint_dict,
bignumbetter=True,
)
if args.wandb and is_master(args):
wandb.finish()
def copy_codebase(args):
from shutil import copytree, ignore_patterns
new_code_path = os.path.join(args.logs, args.name, "code")
if os.path.exists(new_code_path):
print(
f"Error. Experiment already exists at {new_code_path}. Use --name to specify a new experiment."
)
return -1
print(f"Copying codebase to {new_code_path}")
current_code_path = os.path.realpath(__file__)
for _ in range(3):
current_code_path = os.path.dirname(current_code_path)
copytree(
current_code_path, new_code_path, ignore=ignore_patterns("log", "logs", "wandb")
)
print("Done copying code.")
return 1
if __name__ == "__main__":
main()
|