|
import gradio as gr |
|
import numpy as np |
|
import spaces |
|
import torch |
|
import random |
|
from peft import PeftModel |
|
from diffusers import FluxControlPipeline, FluxTransformer2DModel |
|
from image_gen_aux import DepthPreprocessor |
|
|
|
MAX_SEED = np.iinfo(np.int32).max |
|
MAX_IMAGE_SIZE = 2048 |
|
|
|
|
|
pipe = FluxControlPipeline.from_pretrained( |
|
"black-forest-labs/FLUX.1-Depth-dev", |
|
torch_dtype=torch.bfloat16 |
|
) |
|
processor = DepthPreprocessor.from_pretrained("LiheYoung/depth-anything-large-hf") |
|
|
|
@spaces.GPU |
|
def load_lora(lora_path): |
|
if not lora_path.strip(): |
|
return "Please provide a valid LoRA path" |
|
try: |
|
|
|
pipe.to("cuda") |
|
|
|
|
|
try: |
|
pipe.unload_lora_weights() |
|
except: |
|
pass |
|
|
|
|
|
pipe.load_lora_weights(lora_path) |
|
return f"Successfully loaded LoRA weights from {lora_path}" |
|
except Exception as e: |
|
return f"Error loading LoRA weights: {str(e)}" |
|
|
|
@spaces.GPU |
|
def unload_lora(): |
|
try: |
|
pipe.to("cuda") |
|
pipe.unload_lora_weights() |
|
return "Successfully unloaded LoRA weights" |
|
except Exception as e: |
|
return f"Error unloading LoRA weights: {str(e)}" |
|
|
|
@spaces.GPU |
|
def infer(control_image, prompt, seed=42, randomize_seed=False, width=1024, height=1024, |
|
guidance_scale=3.5, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)): |
|
|
|
if randomize_seed: |
|
seed = random.randint(0, MAX_SEED) |
|
|
|
try: |
|
|
|
pipe.to("cuda") |
|
|
|
|
|
control_image = processor(control_image)[0].convert("RGB") |
|
|
|
|
|
image = pipe( |
|
prompt=prompt, |
|
control_image=control_image, |
|
height=height, |
|
width=width, |
|
num_inference_steps=num_inference_steps, |
|
guidance_scale=guidance_scale, |
|
generator=torch.Generator("cuda").manual_seed(seed), |
|
).images[0] |
|
|
|
return image, seed |
|
except Exception as e: |
|
return None, f"Error during inference: {str(e)}" |
|
|
|
css=""" |
|
#col-container { |
|
margin: 0 auto; |
|
max-width: 520px; |
|
} |
|
""" |
|
|
|
with gr.Blocks(css=css) as demo: |
|
|
|
with gr.Column(elem_id="col-container"): |
|
gr.Markdown(f"""# FLUX.1 Depth [dev] with LoRA Support |
|
12B param rectified flow transformer structural conditioning tuned, guidance-distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/) |
|
[[non-commercial license](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md)] [[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1-dev)] |
|
""") |
|
|
|
|
|
with gr.Row(): |
|
lora_path = gr.Textbox( |
|
label="HuggingFace LoRA Path", |
|
placeholder="e.g., Borcherding/FLUX.1-dev-LoRA-AutumnSpringTrees" |
|
) |
|
load_lora_btn = gr.Button("Load LoRA") |
|
unload_lora_btn = gr.Button("Unload LoRA") |
|
|
|
lora_status = gr.Textbox(label="LoRA Status", interactive=False) |
|
|
|
control_image = gr.Image(label="Upload the image for control", type="pil") |
|
with gr.Row(): |
|
prompt = gr.Text( |
|
label="Prompt", |
|
show_label=False, |
|
max_lines=1, |
|
placeholder="Enter your prompt", |
|
container=False, |
|
) |
|
run_button = gr.Button("Run", scale=0) |
|
|
|
result = gr.Image(label="Result", show_label=False) |
|
error_message = gr.Textbox(label="Error", visible=False) |
|
|
|
with gr.Accordion("Advanced Settings", open=False): |
|
seed = gr.Slider( |
|
label="Seed", |
|
minimum=0, |
|
maximum=MAX_SEED, |
|
step=1, |
|
value=0, |
|
) |
|
|
|
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) |
|
|
|
with gr.Row(): |
|
width = gr.Slider( |
|
label="Width", |
|
minimum=256, |
|
maximum=MAX_IMAGE_SIZE, |
|
step=32, |
|
value=1024, |
|
) |
|
|
|
height = gr.Slider( |
|
label="Height", |
|
minimum=256, |
|
maximum=MAX_IMAGE_SIZE, |
|
step=32, |
|
value=1024, |
|
) |
|
|
|
with gr.Row(): |
|
guidance_scale = gr.Slider( |
|
label="Guidance Scale", |
|
minimum=1, |
|
maximum=30, |
|
step=0.5, |
|
value=10, |
|
) |
|
|
|
num_inference_steps = gr.Slider( |
|
label="Number of inference steps", |
|
minimum=1, |
|
maximum=50, |
|
step=1, |
|
value=28, |
|
) |
|
|
|
|
|
load_lora_btn.click( |
|
fn=load_lora, |
|
inputs=[lora_path], |
|
outputs=[lora_status] |
|
) |
|
|
|
unload_lora_btn.click( |
|
fn=unload_lora, |
|
inputs=[], |
|
outputs=[lora_status] |
|
) |
|
|
|
gr.on( |
|
triggers=[run_button.click, prompt.submit], |
|
fn=infer, |
|
inputs=[control_image, prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps], |
|
outputs=[result, seed] |
|
) |
|
|
|
demo.launch() |