Borcherding's picture
Update app.py
ce51ffe verified
raw
history blame
5.68 kB
import gradio as gr
import numpy as np
import spaces
import torch
import random
from peft import PeftModel
from diffusers import FluxControlPipeline, FluxTransformer2DModel
from image_gen_aux import DepthPreprocessor
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048
# Initialize models without moving to CUDA yet
pipe = FluxControlPipeline.from_pretrained(
"black-forest-labs/FLUX.1-Depth-dev",
torch_dtype=torch.bfloat16
)
processor = DepthPreprocessor.from_pretrained("LiheYoung/depth-anything-large-hf")
@spaces.GPU
def load_lora(lora_path):
if not lora_path.strip():
return "Please provide a valid LoRA path"
try:
# Move to GPU within the wrapped function
pipe.to("cuda")
# Unload any existing LoRA weights first
try:
pipe.unload_lora_weights()
except:
pass
# Load new LoRA weights
pipe.load_lora_weights(lora_path)
return f"Successfully loaded LoRA weights from {lora_path}"
except Exception as e:
return f"Error loading LoRA weights: {str(e)}"
@spaces.GPU
def unload_lora():
try:
pipe.to("cuda")
pipe.unload_lora_weights()
return "Successfully unloaded LoRA weights"
except Exception as e:
return f"Error unloading LoRA weights: {str(e)}"
@spaces.GPU
def infer(control_image, prompt, seed=42, randomize_seed=False, width=1024, height=1024,
guidance_scale=3.5, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
try:
# Move pipeline to GPU within the wrapped function
pipe.to("cuda")
# Process control image
control_image = processor(control_image)[0].convert("RGB")
# Generate image
image = pipe(
prompt=prompt,
control_image=control_image,
height=height,
width=width,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
generator=torch.Generator("cuda").manual_seed(seed),
).images[0]
return image, seed
except Exception as e:
return None, f"Error during inference: {str(e)}"
css="""
#col-container {
margin: 0 auto;
max-width: 520px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(f"""# FLUX.1 Depth [dev] with LoRA Support
12B param rectified flow transformer structural conditioning tuned, guidance-distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/)
[[non-commercial license](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md)] [[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1-dev)]
""")
# LoRA controls
with gr.Row():
lora_path = gr.Textbox(
label="HuggingFace LoRA Path",
placeholder="e.g., Borcherding/FLUX.1-dev-LoRA-AutumnSpringTrees"
)
load_lora_btn = gr.Button("Load LoRA")
unload_lora_btn = gr.Button("Unload LoRA")
lora_status = gr.Textbox(label="LoRA Status", interactive=False)
control_image = gr.Image(label="Upload the image for control", type="pil")
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0)
result = gr.Image(label="Result", show_label=False)
error_message = gr.Textbox(label="Error", visible=False)
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance Scale",
minimum=1,
maximum=30,
step=0.5,
value=10,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=28,
)
# Event handlers
load_lora_btn.click(
fn=load_lora,
inputs=[lora_path],
outputs=[lora_status]
)
unload_lora_btn.click(
fn=unload_lora,
inputs=[],
outputs=[lora_status]
)
gr.on(
triggers=[run_button.click, prompt.submit],
fn=infer,
inputs=[control_image, prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
outputs=[result, seed]
)
demo.launch()