import gradio as gr import numpy as np import spaces import torch import random import gc from peft import PeftModel from diffusers import FluxControlPipeline, FluxTransformer2DModel from image_gen_aux import DepthPreprocessor MAX_SEED = np.iinfo(np.int32).max MAX_IMAGE_SIZE = 2048 def init_pipeline(): """Initialize pipeline with memory-efficient settings""" pipe = FluxControlPipeline.from_pretrained( "black-forest-labs/FLUX.1-Depth-dev", torch_dtype=torch.bfloat16, low_cpu_mem_usage=True, use_safetensors=True ) return pipe # Initialize models without moving to CUDA pipe = init_pipeline() processor = DepthPreprocessor.from_pretrained("LiheYoung/depth-anything-large-hf") def cleanup_memory(): """Aggressive memory cleanup""" if torch.cuda.is_available(): with torch.cuda.device('cuda'): torch.cuda.empty_cache() torch.cuda.ipc_collect() gc.collect() def reinit_pipeline(): """Reinitialize the pipeline if needed""" global pipe cleanup_memory() pipe = init_pipeline() cleanup_memory() @spaces.GPU def load_lora(lora_path): global pipe if not lora_path.strip(): return "Please provide a valid LoRA path" try: cleanup_memory() # Reinitialize pipeline reinit_pipeline() # Enable sequential CPU offload pipe.enable_sequential_cpu_offload() # Load LoRA weights pipe.load_lora_weights(lora_path) cleanup_memory() return f"Successfully loaded LoRA weights from {lora_path}" except Exception as e: cleanup_memory() return f"Error loading LoRA weights: {str(e)}" @spaces.GPU def unload_lora(): global pipe try: cleanup_memory() reinit_pipeline() pipe.enable_sequential_cpu_offload() pipe.unload_lora_weights() cleanup_memory() return "Successfully unloaded LoRA weights" except Exception as e: cleanup_memory() return f"Error unloading LoRA weights: {str(e)}" def round_to_multiple(number, multiple): return multiple * round(number / multiple) @spaces.GPU def infer(control_image, prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=3.5, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)): try: cleanup_memory() if randomize_seed: seed = random.randint(0, MAX_SEED) # Ensure dimensions are divisible by 16 width = round_to_multiple(width, 16) height = round_to_multiple(height, 16) # Process control image control_image = processor(control_image)[0].convert("RGB") # Generate image with memory optimization with torch.inference_mode(), torch.cuda.amp.autocast(): image = pipe( prompt=prompt, control_image=control_image, height=height, width=width, num_inference_steps=num_inference_steps, guidance_scale=guidance_scale, generator=torch.Generator("cuda").manual_seed(seed), ).images[0] cleanup_memory() return image, seed except Exception as e: cleanup_memory() return None, f"Error during inference: {str(e)}" css=""" #col-container { margin: 0 auto; max-width: 520px; } """ with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): gr.Markdown(f"""# FLUX.1 Depth [dev] with LoRA Support 12B param rectified flow transformer structural conditioning tuned, guidance-distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/) [[non-commercial license](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md)] [[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1-dev)] """) # LoRA controls with gr.Row(): lora_path = gr.Textbox( label="HuggingFace LoRA Path", placeholder="e.g., Borcherding/FLUX.1-dev-LoRA-AutumnSpringTrees" ) load_lora_btn = gr.Button("Load LoRA") unload_lora_btn = gr.Button("Unload LoRA") lora_status = gr.Textbox(label="LoRA Status", interactive=False) control_image = gr.Image(label="Upload the image for control", type="pil") with gr.Row(): prompt = gr.Text( label="Prompt", show_label=False, max_lines=1, placeholder="Enter your prompt", container=False, ) run_button = gr.Button("Run", scale=0) result = gr.Image(label="Result", show_label=False) error_message = gr.Textbox(label="Error", visible=False) with gr.Accordion("Advanced Settings", open=False): seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, ) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) with gr.Row(): width = gr.Slider( label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=16, value=1024, ) height = gr.Slider( label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=16, value=1024, ) with gr.Row(): guidance_scale = gr.Slider( label="Guidance Scale", minimum=1, maximum=30, step=0.5, value=10, ) num_inference_steps = gr.Slider( label="Number of inference steps", minimum=1, maximum=50, step=1, value=28, ) # Event handlers load_lora_btn.click( fn=load_lora, inputs=[lora_path], outputs=[lora_status] ) unload_lora_btn.click( fn=unload_lora, inputs=[], outputs=[lora_status] ) gr.on( triggers=[run_button.click, prompt.submit], fn=infer, inputs=[control_image, prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps], outputs=[result, seed] ) demo.launch()