import gradio as gr import numpy as np import spaces import torch import random from peft import PeftModel from diffusers import FluxControlPipeline, FluxTransformer2DModel from image_gen_aux import DepthPreprocessor MAX_SEED = np.iinfo(np.int32).max MAX_IMAGE_SIZE = 2048 # Initialize models without moving to CUDA yet pipe = FluxControlPipeline.from_pretrained( "black-forest-labs/FLUX.1-Depth-dev", torch_dtype=torch.bfloat16 ) processor = DepthPreprocessor.from_pretrained("LiheYoung/depth-anything-large-hf") @spaces.GPU def load_lora(lora_path): if not lora_path.strip(): return "Please provide a valid LoRA path" try: # Move to GPU within the wrapped function pipe.to("cuda") # Unload any existing LoRA weights first try: pipe.unload_lora_weights() except: pass # Load new LoRA weights pipe.load_lora_weights(lora_path) return f"Successfully loaded LoRA weights from {lora_path}" except Exception as e: return f"Error loading LoRA weights: {str(e)}" @spaces.GPU def unload_lora(): try: pipe.to("cuda") pipe.unload_lora_weights() return "Successfully unloaded LoRA weights" except Exception as e: return f"Error unloading LoRA weights: {str(e)}" @spaces.GPU def infer(control_image, prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=3.5, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)): if randomize_seed: seed = random.randint(0, MAX_SEED) try: # Move pipeline to GPU within the wrapped function pipe.to("cuda") # Process control image control_image = processor(control_image)[0].convert("RGB") # Generate image image = pipe( prompt=prompt, control_image=control_image, height=height, width=width, num_inference_steps=num_inference_steps, guidance_scale=guidance_scale, generator=torch.Generator("cuda").manual_seed(seed), ).images[0] return image, seed except Exception as e: return None, f"Error during inference: {str(e)}" css=""" #col-container { margin: 0 auto; max-width: 520px; } """ with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): gr.Markdown(f"""# FLUX.1 Depth [dev] with LoRA Support 12B param rectified flow transformer structural conditioning tuned, guidance-distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/) [[non-commercial license](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md)] [[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1-dev)] """) # LoRA controls with gr.Row(): lora_path = gr.Textbox( label="HuggingFace LoRA Path", placeholder="e.g., Borcherding/FLUX.1-dev-LoRA-AutumnSpringTrees" ) load_lora_btn = gr.Button("Load LoRA") unload_lora_btn = gr.Button("Unload LoRA") lora_status = gr.Textbox(label="LoRA Status", interactive=False) control_image = gr.Image(label="Upload the image for control", type="pil") with gr.Row(): prompt = gr.Text( label="Prompt", show_label=False, max_lines=1, placeholder="Enter your prompt", container=False, ) run_button = gr.Button("Run", scale=0) result = gr.Image(label="Result", show_label=False) error_message = gr.Textbox(label="Error", visible=False) with gr.Accordion("Advanced Settings", open=False): seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, ) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) with gr.Row(): width = gr.Slider( label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024, ) height = gr.Slider( label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024, ) with gr.Row(): guidance_scale = gr.Slider( label="Guidance Scale", minimum=1, maximum=30, step=0.5, value=10, ) num_inference_steps = gr.Slider( label="Number of inference steps", minimum=1, maximum=50, step=1, value=28, ) # Event handlers load_lora_btn.click( fn=load_lora, inputs=[lora_path], outputs=[lora_status] ) unload_lora_btn.click( fn=unload_lora, inputs=[], outputs=[lora_status] ) gr.on( triggers=[run_button.click, prompt.submit], fn=infer, inputs=[control_image, prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps], outputs=[result, seed] ) demo.launch()