Spaces:
Runtime error
Runtime error
File size: 11,808 Bytes
375a436 ecfea65 375a436 ecfea65 375a436 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 |
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
import os
import time
import hashlib
import pickle
import copy
import uuid
import numpy as np
import torch
import dnnlib
#----------------------------------------------------------------------------
class MetricOptions:
def __init__(self, G=None, G_kwargs={}, dataset_kwargs={}, num_gpus=1, rank=0, device=None, progress=None, cache=True):
assert 0 <= rank < num_gpus
self.G = G
self.G_kwargs = dnnlib.EasyDict(G_kwargs)
self.dataset_kwargs = dnnlib.EasyDict(dataset_kwargs)
self.num_gpus = num_gpus
self.rank = rank
self.device = device if device is not None else torch.device('cuda', rank)
self.progress = progress.sub() if progress is not None and rank == 0 else ProgressMonitor()
self.cache = cache
#----------------------------------------------------------------------------
_feature_detector_cache = dict()
def get_feature_detector_name(url):
return os.path.splitext(url.split('/')[-1])[0]
def get_feature_detector(url, device=torch.device('cpu'), num_gpus=1, rank=0, verbose=False):
assert 0 <= rank < num_gpus
key = (url, device)
if key not in _feature_detector_cache:
is_leader = (rank == 0)
if not is_leader and num_gpus > 1:
torch.distributed.barrier() # leader goes first
with dnnlib.util.open_url(url, verbose=(verbose and is_leader)) as f:
_feature_detector_cache[key] = torch.jit.load(f).eval().to(device)
if is_leader and num_gpus > 1:
torch.distributed.barrier() # others follow
return _feature_detector_cache[key]
#----------------------------------------------------------------------------
class FeatureStats:
def __init__(self, capture_all=False, capture_mean_cov=False, max_items=None):
self.capture_all = capture_all
self.capture_mean_cov = capture_mean_cov
self.max_items = max_items
self.num_items = 0
self.num_features = None
self.all_features = None
self.raw_mean = None
self.raw_cov = None
def set_num_features(self, num_features):
if self.num_features is not None:
assert num_features == self.num_features
else:
self.num_features = num_features
self.all_features = []
self.raw_mean = np.zeros([num_features], dtype=np.float64)
self.raw_cov = np.zeros([num_features, num_features], dtype=np.float64)
def is_full(self):
return (self.max_items is not None) and (self.num_items >= self.max_items)
def append(self, x):
x = np.asarray(x, dtype=np.float32)
assert x.ndim == 2
if (self.max_items is not None) and (self.num_items + x.shape[0] > self.max_items):
if self.num_items >= self.max_items:
return
x = x[:self.max_items - self.num_items]
self.set_num_features(x.shape[1])
self.num_items += x.shape[0]
if self.capture_all:
self.all_features.append(x)
if self.capture_mean_cov:
x64 = x.astype(np.float64)
self.raw_mean += x64.sum(axis=0)
self.raw_cov += x64.T @ x64
def append_torch(self, x, num_gpus=1, rank=0):
assert isinstance(x, torch.Tensor) and x.ndim == 2
assert 0 <= rank < num_gpus
if num_gpus > 1:
ys = []
for src in range(num_gpus):
y = x.clone()
torch.distributed.broadcast(y, src=src)
ys.append(y)
x = torch.stack(ys, dim=1).flatten(0, 1) # interleave samples
self.append(x.cpu().numpy())
def get_all(self):
assert self.capture_all
return np.concatenate(self.all_features, axis=0)
def get_all_torch(self):
return torch.from_numpy(self.get_all())
def get_mean_cov(self):
assert self.capture_mean_cov
mean = self.raw_mean / self.num_items
cov = self.raw_cov / self.num_items
cov = cov - np.outer(mean, mean)
return mean, cov
def save(self, pkl_file):
with open(pkl_file, 'wb') as f:
pickle.dump(self.__dict__, f)
@staticmethod
def load(pkl_file):
with open(pkl_file, 'rb') as f:
s = dnnlib.EasyDict(pickle.load(f))
obj = FeatureStats(capture_all=s.capture_all, max_items=s.max_items)
obj.__dict__.update(s)
return obj
#----------------------------------------------------------------------------
class ProgressMonitor:
def __init__(self, tag=None, num_items=None, flush_interval=1000, verbose=False, progress_fn=None, pfn_lo=0, pfn_hi=1000, pfn_total=1000):
self.tag = tag
self.num_items = num_items
self.verbose = verbose
self.flush_interval = flush_interval
self.progress_fn = progress_fn
self.pfn_lo = pfn_lo
self.pfn_hi = pfn_hi
self.pfn_total = pfn_total
self.start_time = time.time()
self.batch_time = self.start_time
self.batch_items = 0
if self.progress_fn is not None:
self.progress_fn(self.pfn_lo, self.pfn_total)
def update(self, cur_items):
assert (self.num_items is None) or (cur_items <= self.num_items)
if (cur_items < self.batch_items + self.flush_interval) and (self.num_items is None or cur_items < self.num_items):
return
cur_time = time.time()
total_time = cur_time - self.start_time
time_per_item = (cur_time - self.batch_time) / max(cur_items - self.batch_items, 1)
if (self.verbose) and (self.tag is not None):
print(f'{self.tag:<19s} items {cur_items:<7d} time {dnnlib.util.format_time(total_time):<12s} ms/item {time_per_item*1e3:.2f}')
self.batch_time = cur_time
self.batch_items = cur_items
if (self.progress_fn is not None) and (self.num_items is not None):
self.progress_fn(self.pfn_lo + (self.pfn_hi - self.pfn_lo) * (cur_items / self.num_items), self.pfn_total)
def sub(self, tag=None, num_items=None, flush_interval=1000, rel_lo=0, rel_hi=1):
return ProgressMonitor(
tag = tag,
num_items = num_items,
flush_interval = flush_interval,
verbose = self.verbose,
progress_fn = self.progress_fn,
pfn_lo = self.pfn_lo + (self.pfn_hi - self.pfn_lo) * rel_lo,
pfn_hi = self.pfn_lo + (self.pfn_hi - self.pfn_lo) * rel_hi,
pfn_total = self.pfn_total,
)
#----------------------------------------------------------------------------
def compute_feature_stats_for_dataset(opts, detector_url, detector_kwargs, rel_lo=0, rel_hi=1, batch_size=64, data_loader_kwargs=None, max_items=None, **stats_kwargs):
dataset = dnnlib.util.construct_class_by_name(**opts.dataset_kwargs)
if data_loader_kwargs is None:
data_loader_kwargs = dict(pin_memory=True, num_workers=3, prefetch_factor=2)
# Try to lookup from cache.
cache_file = None
if opts.cache:
# Choose cache file name.
args = dict(dataset_kwargs=opts.dataset_kwargs, detector_url=detector_url, detector_kwargs=detector_kwargs, stats_kwargs=stats_kwargs)
md5 = hashlib.md5(repr(sorted(args.items())).encode('utf-8'))
cache_tag = f'{dataset.name}-{get_feature_detector_name(detector_url)}-{md5.hexdigest()}'
cache_file = dnnlib.make_cache_dir_path('gan-metrics', cache_tag + '.pkl')
# Check if the file exists (all processes must agree).
flag = os.path.isfile(cache_file) if opts.rank == 0 else False
if opts.num_gpus > 1:
flag = torch.as_tensor(flag, dtype=torch.float32, device=opts.device)
torch.distributed.broadcast(tensor=flag, src=0)
flag = (float(flag.cpu()) != 0)
# Load.
if flag:
return FeatureStats.load(cache_file)
# Initialize.
num_items = len(dataset)
if max_items is not None:
num_items = min(num_items, max_items)
stats = FeatureStats(max_items=num_items, **stats_kwargs)
progress = opts.progress.sub(tag='dataset features', num_items=num_items, rel_lo=rel_lo, rel_hi=rel_hi)
detector = get_feature_detector(url=detector_url, device=opts.device, num_gpus=opts.num_gpus, rank=opts.rank, verbose=progress.verbose)
# Main loop.
item_subset = [(i * opts.num_gpus + opts.rank) % num_items for i in range((num_items - 1) // opts.num_gpus + 1)]
for images, _labels in torch.utils.data.DataLoader(dataset=dataset, sampler=item_subset, batch_size=batch_size, **data_loader_kwargs):
if images.shape[1] == 1:
images = images.repeat([1, 3, 1, 1])
features = detector(images.to(opts.device), **detector_kwargs)
stats.append_torch(features, num_gpus=opts.num_gpus, rank=opts.rank)
progress.update(stats.num_items)
# Save to cache.
if cache_file is not None and opts.rank == 0:
os.makedirs(os.path.dirname(cache_file), exist_ok=True)
temp_file = cache_file + '.' + uuid.uuid4().hex
stats.save(temp_file)
os.replace(temp_file, cache_file) # atomic
return stats
#----------------------------------------------------------------------------
def compute_feature_stats_for_generator(opts, detector_url, detector_kwargs, rel_lo=0, rel_hi=1, batch_size=64, batch_gen=None, jit=False, **stats_kwargs):
if batch_gen is None:
batch_gen = min(batch_size, 4)
assert batch_size % batch_gen == 0
# Setup generator and load labels.
G = copy.deepcopy(opts.G).eval().requires_grad_(False).to(opts.device)
dataset = dnnlib.util.construct_class_by_name(**opts.dataset_kwargs)
# Image generation func.
def run_generator(z, c):
img = G(z=z, c=c, **opts.G_kwargs)
img = (img * 127.5 + 128).clamp(0, 255).to(torch.uint8)
return img
# JIT.
if jit:
z = torch.zeros([batch_gen, G.z_dim], device=opts.device)
c = torch.zeros([batch_gen, G.c_dim], device=opts.device)
run_generator = torch.jit.trace(run_generator, [z, c], check_trace=False)
# Initialize.
stats = FeatureStats(**stats_kwargs)
assert stats.max_items is not None
progress = opts.progress.sub(tag='generator features', num_items=stats.max_items, rel_lo=rel_lo, rel_hi=rel_hi)
detector = get_feature_detector(url=detector_url, device=opts.device, num_gpus=opts.num_gpus, rank=opts.rank, verbose=progress.verbose)
# Main loop.
while not stats.is_full():
images = []
for _i in range(batch_size // batch_gen):
z = torch.randn([batch_gen, G.z_dim], device=opts.device)
c = [dataset.get_label(np.random.randint(len(dataset))) for _i in range(batch_gen)]
c = torch.from_numpy(np.stack(c)).pin_memory().to(opts.device)
images.append(run_generator(z, c))
images = torch.cat(images)
if images.shape[1] == 1:
images = images.repeat([1, 3, 1, 1])
features = detector(images, **detector_kwargs)
stats.append_torch(features, num_gpus=opts.num_gpus, rank=opts.rank)
progress.update(stats.num_items)
return stats
#----------------------------------------------------------------------------
|