File size: 12,690 Bytes
375a436
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5c824be
 
 
 
 
 
 
 
 
 
 
 
375a436
 
 
 
 
 
 
 
 
 
 
 
 
5c824be
 
 
375a436
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5c824be
375a436
 
5c824be
 
 
 
 
 
375a436
 
 
 
 
5c824be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
375a436
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5c824be
 
 
 
 
 
 
 
 
 
 
 
 
 
375a436
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
# Copyright (c) 2021, NVIDIA CORPORATION.  All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto.  Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.

"""Project given image to the latent space of pretrained network pickle."""

import copy
import os
from time import perf_counter

import click
import imageio
import numpy as np
import PIL.Image
import torch
import torch.nn.functional as F

import dnnlib
import legacy

_MODELS = {
    "RN50": "https://openaipublic.azureedge.net/clip/models/afeb0e10f9e5a86da6080e35cf09123aca3b358a0c3e3b6c78a7b63bc04b6762/RN50.pt",
    "RN101": "https://openaipublic.azureedge.net/clip/models/8fa8567bab74a42d41c5915025a8e4538c3bdbe8804a470a72f30b0d94fab599/RN101.pt",
    "RN50x4": "https://openaipublic.azureedge.net/clip/models/7e526bd135e493cef0776de27d5f42653e6b4c8bf9e0f653bb11773263205fdd/RN50x4.pt",
    "RN50x16": "https://openaipublic.azureedge.net/clip/models/52378b407f34354e150460fe41077663dd5b39c54cd0bfd2b27167a4a06ec9aa/RN50x16.pt",
    "RN50x64": "https://openaipublic.azureedge.net/clip/models/be1cfb55d75a9666199fb2206c106743da0f6468c9d327f3e0d0a543a9919d9c/RN50x64.pt",
    "ViT-B/32": "https://openaipublic.azureedge.net/clip/models/40d365715913c9da98579312b702a82c18be219cc2a73407c4526f58eba950af/ViT-B-32.pt",
    "ViT-B/16": "https://openaipublic.azureedge.net/clip/models/5806e77cd80f8b59890b7e101eabd078d9fb84e6937f9e85e4ecb61988df416f/ViT-B-16.pt",
    "ViT-L/14": "https://openaipublic.azureedge.net/clip/models/b8cca3fd41ae0c99ba7e8951adf17d267cdb84cd88be6f7c2e0eca1737a03836/ViT-L-14.pt",
    "ViT-L/14@336px": "https://openaipublic.azureedge.net/clip/models/3035c92b350959924f9f00213499208652fc7ea050643e8b385c2dac08641f02/ViT-L-14-336px.pt",
}

def project(
    G,
    target: torch.Tensor, # [C,H,W] and dynamic range [0,255], W & H must match G output resolution
    *,
    num_steps                  = 1000,
    w_avg_samples              = 10000,
    initial_learning_rate      = 0.1,
    initial_noise_factor       = 0.05,
    lr_rampdown_length         = 0.25,
    lr_rampup_length           = 0.05,
    noise_ramp_length          = 0.75,
    regularize_noise_weight    = 1e5,
    verbose                    = False,
    model_name='vgg16',
    loss_type='l2',
    normalize_for_clip=True,
    device: torch.device
):
    assert target.shape == (G.img_channels, G.img_resolution, G.img_resolution)

    def logprint(*args):
        if verbose:
            print(*args)

    G = copy.deepcopy(G).eval().requires_grad_(False).to(device) # type: ignore

    # Compute w stats.
    logprint(f'Computing W midpoint and stddev using {w_avg_samples} samples...')
    z_samples = np.random.RandomState(123).randn(w_avg_samples, G.z_dim)
    w_samples = G.mapping(torch.from_numpy(z_samples).to(device), None)  # [N, L, C]
    w_samples = w_samples[:, :1, :].cpu().numpy().astype(np.float32)       # [N, 1, C]
    w_avg = np.mean(w_samples, axis=0, keepdims=True)      # [1, 1, C]
    w_std = (np.sum((w_samples - w_avg) ** 2) / w_avg_samples) ** 0.5

    # Setup noise inputs.
    noise_bufs = { name: buf for (name, buf) in G.synthesis.named_buffers() if 'noise_const' in name }

    USE_CLIP = model_name != 'vgg16'
    # Load VGG16 feature detector.
    url = 'https://nvlabs-fi-cdn.nvidia.com/stylegan2-ada-pytorch/pretrained/metrics/vgg16.pt'
    if USE_CLIP:
        # url = 'https://openaipublic.azureedge.net/clip/models/40d365715913c9da98579312b702a82c18be219cc2a73407c4526f58eba950af/ViT-B-32.pt'
        # url = 'https://openaipublic.azureedge.net/clip/models/5806e77cd80f8b59890b7e101eabd078d9fb84e6937f9e85e4ecb61988df416f/ViT-B-16.pt'
        # url = 'https://openaipublic.azureedge.net/clip/models/b8cca3fd41ae0c99ba7e8951adf17d267cdb84cd88be6f7c2e0eca1737a03836/ViT-L-14.pt'
        # url = 'https://openaipublic.azureedge.net/clip/models/3035c92b350959924f9f00213499208652fc7ea050643e8b385c2dac08641f02/ViT-L-14-336px.pt'
        url = _MODELS[model_name]
    with dnnlib.util.open_url(url) as f:
        vgg16 = torch.jit.load(f).eval().to(device)

    # Features for target image.
    target_images = target.unsqueeze(0).to(device).to(torch.float32)
    if USE_CLIP:
        image_mean = torch.tensor([0.48145466, 0.4578275, 0.40821073]).to(device)[:, None, None]
        image_std = torch.tensor([0.26862954, 0.26130258, 0.27577711]).to(device)[:, None, None]
        # target_images = F.interpolate(target_images, size=(224, 224), mode='area')
        target_images = F.interpolate(target_images, size=(vgg16.input_resolution.item(), vgg16.input_resolution.item()), mode='area')
        print("target_images.shape:", target_images.shape)
        def _encode_image(image):
            image = image / 255.
            # image = torch.sigmoid(image)
            if normalize_for_clip:
                image = (image - image_mean) / image_std
            return vgg16.encode_image(image)
        target_features = _encode_image(target_images.clamp(0, 255))
        target_features = target_features.detach()
    else:
        if target_images.shape[2] > 256:
            target_images = F.interpolate(target_images, size=(256, 256), mode='area')
        target_features = vgg16(target_images, resize_images=False, return_lpips=True)

    w_opt = torch.tensor(w_avg, dtype=torch.float32, device=device, requires_grad=True) # pylint: disable=not-callable
    w_out = torch.zeros([num_steps] + list(w_opt.shape[1:]), dtype=torch.float32, device=device)
    optimizer = torch.optim.Adam([w_opt] + list(noise_bufs.values()), betas=(0.9, 0.999), lr=initial_learning_rate)

    # Init noise.
    for buf in noise_bufs.values():
        buf[:] = torch.randn_like(buf)
        buf.requires_grad = True

    for step in range(num_steps):
        # Learning rate schedule.
        t = step / num_steps
        w_noise_scale = w_std * initial_noise_factor * max(0.0, 1.0 - t / noise_ramp_length) ** 2
        lr_ramp = min(1.0, (1.0 - t) / lr_rampdown_length)
        lr_ramp = 0.5 - 0.5 * np.cos(lr_ramp * np.pi)
        lr_ramp = lr_ramp * min(1.0, t / lr_rampup_length)
        lr = initial_learning_rate * lr_ramp
        for param_group in optimizer.param_groups:
            param_group['lr'] = lr

        # Synth images from opt_w.
        w_noise = torch.randn_like(w_opt) * w_noise_scale
        ws = (w_opt + w_noise).repeat([1, G.mapping.num_ws, 1])
        synth_images = G.synthesis(ws, noise_mode='const')

        # Downsample image to 256x256 if it's larger than that. VGG was built for 224x224 images.
        synth_images = (synth_images + 1) * (255/2)
        if synth_images.shape[2] > 256:
            synth_images = F.interpolate(synth_images, size=(256, 256), mode='area')

        # Features for synth images.
        if USE_CLIP:
            synth_images = F.interpolate(synth_images, size=(vgg16.input_resolution.item(), vgg16.input_resolution.item()), mode='area')
            synth_features = _encode_image(synth_images)
            if loss_type == 'cosine':
                target_features_normalized = target_features / target_features.norm(dim=-1, keepdim=True).detach()
                synth_features_normalized = synth_features / synth_features.norm(dim=-1, keepdim=True).detach()
                dist = 1.0 - torch.sum(synth_features_normalized * target_features_normalized)
            elif loss_type == 'l1':
                dist = (target_features - synth_features).abs().sum()
            else:
                dist = (target_features - synth_features).square().sum()
        else:
            synth_features = vgg16(synth_images, resize_images=False, return_lpips=True)
            dist = (target_features - synth_features).square().sum()

        # Noise regularization.
        reg_loss = 0.0
        for v in noise_bufs.values():
            noise = v[None,None,:,:] # must be [1,1,H,W] for F.avg_pool2d()
            while True:
                reg_loss += (noise*torch.roll(noise, shifts=1, dims=3)).mean()**2
                reg_loss += (noise*torch.roll(noise, shifts=1, dims=2)).mean()**2
                if noise.shape[2] <= 8:
                    break
                noise = F.avg_pool2d(noise, kernel_size=2)
        loss = dist + reg_loss * regularize_noise_weight

        # Step
        optimizer.zero_grad(set_to_none=True)
        loss.backward()
        optimizer.step()
        logprint(f'step {step+1:>4d}/{num_steps}: dist {dist:<4.2f} loss {float(loss):<5.2f}')

        # Save projected W for each optimization step.
        w_out[step] = w_opt.detach()[0]

        # Normalize noise.
        with torch.no_grad():
            for buf in noise_bufs.values():
                buf -= buf.mean()
                buf *= buf.square().mean().rsqrt()

    return w_out.repeat([1, G.mapping.num_ws, 1])

#----------------------------------------------------------------------------

@click.command()
@click.option('--network', 'network_pkl', help='Network pickle filename', required=True)
@click.option('--target', 'target_fname', help='Target image file to project to', required=True, metavar='FILE')
@click.option('--num-steps',              help='Number of optimization steps', type=int, default=1000, show_default=True)
@click.option('--seed',                   help='Random seed', type=int, default=303, show_default=True)
@click.option('--save-video',             help='Save an mp4 video of optimization progress', type=bool, default=True, show_default=True)
@click.option('--outdir',                 help='Where to save the output images', required=True, metavar='DIR')
def run_projection(
    network_pkl: str,
    target_fname: str,
    outdir: str,
    save_video: bool,
    seed: int,
    num_steps: int
):
    """Project given image to the latent space of pretrained network pickle.

    Examples:

    \b
    python projector.py --outdir=out --target=~/mytargetimg.png \\
        --network=https://nvlabs-fi-cdn.nvidia.com/stylegan2-ada-pytorch/pretrained/ffhq.pkl
    """
    np.random.seed(seed)
    torch.manual_seed(seed)

    # Load networks.
    print('Loading networks from "%s"...' % network_pkl)
    device = torch.device('cuda')
    with dnnlib.util.open_url(network_pkl) as fp:
        G = legacy.load_network_pkl(fp)['G_ema'].requires_grad_(False).to(device) # type: ignore

    # Load target image.
    target_pil = PIL.Image.open(target_fname).convert('RGB')
    w, h = target_pil.size
    s = min(w, h)
    target_pil = target_pil.crop(((w - s) // 2, (h - s) // 2, (w + s) // 2, (h + s) // 2))
    target_pil = target_pil.resize((G.img_resolution, G.img_resolution), PIL.Image.LANCZOS)
    target_uint8 = np.array(target_pil, dtype=np.uint8)

    # Optimize projection.
    start_time = perf_counter()
    projected_w_steps = project(
        G,
        target=torch.tensor(target_uint8.transpose([2, 0, 1]), device=device), # pylint: disable=not-callable
        num_steps=num_steps,
        device=device,
        verbose=True
    )
    print (f'Elapsed: {(perf_counter()-start_time):.1f} s')

    # Render debug output: optional video and projected image and W vector.
    os.makedirs(outdir, exist_ok=True)
    if save_video:
        video = imageio.get_writer(f'{outdir}/proj.mp4', mode='I', fps=10, codec='libx264', bitrate='16M')
        print (f'Saving optimization progress video "{outdir}/proj.mp4"')
        for projected_w in projected_w_steps:
            synth_image = G.synthesis(projected_w.unsqueeze(0), noise_mode='const')
            synth_image = (synth_image + 1) * (255/2)
            synth_image = synth_image.permute(0, 2, 3, 1).clamp(0, 255).to(torch.uint8)[0].cpu().numpy()
            video.append_data(np.concatenate([target_uint8, synth_image], axis=1))
        video.close()

    # Save final projected frame and W vector.
    target_pil.save(f'{outdir}/target.png')
    projected_w = projected_w_steps[-1]
    synth_image = G.synthesis(projected_w.unsqueeze(0), noise_mode='const')
    synth_image = (synth_image + 1) * (255/2)
    synth_image = synth_image.permute(0, 2, 3, 1).clamp(0, 255).to(torch.uint8)[0].cpu().numpy()
    PIL.Image.fromarray(synth_image, 'RGB').save(f'{outdir}/proj.png')
    np.savez(f'{outdir}/projected_w.npz', w=projected_w.unsqueeze(0).cpu().numpy())

#----------------------------------------------------------------------------

if __name__ == "__main__":
    run_projection() # pylint: disable=no-value-for-parameter

#----------------------------------------------------------------------------