File size: 5,549 Bytes
a99d343
 
 
e0413c6
cab2267
211c827
a99d343
cab2267
879c1f7
cab2267
 
a99d343
b5c7bac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
211c827
e0413c6
211c827
4306cde
714e7bd
853c062
a99d343
 
 
b5c7bac
a99d343
 
 
 
 
 
4306cde
 
 
 
211c827
 
4306cde
 
 
 
 
 
 
418554b
4306cde
 
418554b
4306cde
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
211c827
acef008
4306cde
211c827
4306cde
 
 
 
 
 
 
211c827
4306cde
 
 
 
6d51d70
0bb6cb9
6d51d70
 
 
 
 
4306cde
0bb6cb9
3db8d6f
4306cde
 
 
 
 
0bb6cb9
3db8d6f
4306cde
 
 
 
 
211c827
4306cde
 
6983f8a
4306cde
 
 
 
211c827
4306cde
 
 
7fdebcb
 
1847e89
7fdebcb
1847e89
 
 
 
 
7fdebcb
1847e89
 
dce1749
1847e89
 
4306cde
1847e89
 
7fdebcb
211c827
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
import gradio as gr
from ultralytics import YOLOv10 
import supervision as sv
import spaces
from huggingface_hub import hf_hub_download


def download_models(model_id):
    hf_hub_download("BoukamchaSmartVisions/Yolov10", filename=f"{model_id}", local_dir=f"./")
    return f"./{model_id}"
    
box_annotator = sv.BoxAnnotator()
category_dict = {
    0: 'person', 1: 'bicycle', 2: 'car', 3: 'motorcycle', 4: 'airplane', 5: 'bus',
    6: 'train', 7: 'truck', 8: 'boat', 9: 'traffic light', 10: 'fire hydrant',
    11: 'stop sign', 12: 'parking meter', 13: 'bench', 14: 'bird', 15: 'cat',
    16: 'dog', 17: 'horse', 18: 'sheep', 19: 'cow', 20: 'elephant', 21: 'bear',
    22: 'zebra', 23: 'giraffe', 24: 'backpack', 25: 'umbrella', 26: 'handbag',
    27: 'tie', 28: 'suitcase', 29: 'frisbee', 30: 'skis', 31: 'snowboard',
    32: 'sports ball', 33: 'kite', 34: 'baseball bat', 35: 'baseball glove',
    36: 'skateboard', 37: 'surfboard', 38: 'tennis racket', 39: 'bottle',
    40: 'wine glass', 41: 'cup', 42: 'fork', 43: 'knife', 44: 'spoon', 45: 'bowl',
    46: 'banana', 47: 'apple', 48: 'sandwich', 49: 'orange', 50: 'broccoli',
    51: 'carrot', 52: 'hot dog', 53: 'pizza', 54: 'donut', 55: 'cake',
    56: 'chair', 57: 'couch', 58: 'potted plant', 59: 'bed', 60: 'dining table',
    61: 'toilet', 62: 'tv', 63: 'laptop', 64: 'mouse', 65: 'remote', 66: 'keyboard',
    67: 'cell phone', 68: 'microwave', 69: 'oven', 70: 'toaster', 71: 'sink',
    72: 'refrigerator', 73: 'book', 74: 'clock', 75: 'vase', 76: 'scissors',
    77: 'teddy bear', 78: 'hair drier', 79: 'toothbrush'
}


@spaces.GPU(duration=200)
def yolov10_inference(image, model_id, image_size, conf_threshold, iou_threshold):
    model_path = download_models(model_id)
    model = YOLOv10(model_path)
    results = model(source=image, imgsz=image_size, iou=iou_threshold, conf=conf_threshold, verbose=False)[0]
    detections = sv.Detections.from_ultralytics(results)
    
    labels = [
        f"{category_dict[class_id]} {confidence:.2f}"
        for class_id, confidence in zip(detections.class_id, detections.confidence)
    ]
    annotated_image = box_annotator.annotate(image, detections=detections, labels=labels)

    return annotated_image

def app():
    with gr.Blocks():
        with gr.Row():
            with gr.Column():
                image = gr.Image(type="numpy", label="Image")
                
                model_id = gr.Dropdown(
                    label="Model",
                    choices=[
                        "yolov10n.pt",
                        "yolov10s.pt",
                        "yolov10m.pt",
                        "yolov10b.pt",
                        "yolov10l.pt",
                        "yolov10x.pt",
                    ],
                    value="yolov10m.pt",
                )
                image_size = gr.Slider(
                    label="Image Size",
                    minimum=320,
                    maximum=1280,
                    step=32,
                    value=640,
                )
                conf_threshold = gr.Slider(
                    label="Confidence Threshold",
                    minimum=0.1,
                    maximum=1.0,
                    step=0.1,
                    value=0.25,
                )
                iou_threshold = gr.Slider(
                    label="IoU Threshold",
                    minimum=0.1,
                    maximum=1.0,
                    step=0.1,
                    value=0.45,
                )
                yolov10_infer = gr.Button(value="Detect Objects")

            with gr.Column():
                output_image = gr.Image(type="numpy", label="Annotated Image")

        yolov10_infer.click(
            fn=yolov10_inference,
            inputs=[
                image,
                model_id,
                image_size,
                conf_threshold,
                iou_threshold,
            ],
            outputs=[output_image],
        )

        gr.Examples(
            examples=[
                [
                    "Animals_persones.jpg",
                    "yolov10x.pt",
                    640,
                    0.25,
                    0.45,
                ],
                [
                    "collage-horses-other-pets-white.jpg",
                    "yolov10m.pt",
                    640,
                    0.25,
                    0.45,
                ],
                [
                    "Ville.png",
                    "yolov10b.pt",
                    640,
                    0.25,
                    0.45,
                ],
            ],
            fn=yolov10_inference,
            inputs=[
                image,
                model_id,
                image_size,
                conf_threshold,
                iou_threshold,
            ],
            outputs=[output_image],
            cache_examples=True,
        )

gradio_app = gr.Blocks()
with gradio_app:
    gr.HTML(
        """
    <h1 style='text-align: center'>
    YOLOv10: Real-Time End-to-End Object Detection
    </h1>
    """)
    gr.HTML(
        """
        <h3 style='text-align: center'>
        Follow me for more!
        <a href='https://github.com/hamdiboukamcha/' target='_blank'>Github</a> | <a href='https://www.linkedin.com/in/hamdi-boukamcha-437830146/' target='_blank'>Linkedin</a>  | <a href='https://huggingface.co/BoukamchaSmartVisions' target='_blank'>HuggingFace</a>
        </h3>
        """)
    with gr.Row():
        with gr.Column():
            app()

gradio_app.launch(debug=True)