BramLeo commited on
Commit
1ff4c99
·
verified ·
1 Parent(s): 07eecec

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +111 -44
app.py CHANGED
@@ -1,20 +1,53 @@
 
1
  import gradio as gr
 
 
 
2
  from llama_cpp import Llama
3
- from llama_index.core import SimpleDirectoryReader, VectorStoreIndex
4
- from llama_index.core.prompts import PromptTemplate
5
- from llama_index.core.llms import ChatMessage, MessageRole
6
  from llama_index.embeddings.huggingface import HuggingFaceEmbedding
7
- from llama_index.core.chat_engine.condense_plus_context import CondensePlusContextChatEngine
 
8
 
9
- # Load the LLaMA model
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10
  def initialize_llama_model():
11
- model_path= hf_hub_download(
 
12
  repo_id="TheBLoke/zephyr-7b-beta-GGUF", # Nama repo model
13
  filename="zephyr-7b-beta.Q4_K_M.gguf", # Nama file model
14
  cache_dir="./models" # Lokasi direktori untuk menyimpan model
15
  )
16
  return model_path
17
 
 
18
  def initialize_settings(model_path):
19
  Settings.llm = Llama(
20
  model_path=model_path,
@@ -23,41 +56,75 @@ def initialize_settings(model_path):
23
  top_p=0.9 # Mengurangi eksplorasi token
24
  )
25
 
26
- # Load documents
27
- documents = SimpleDirectoryReader(input_files=[
28
- "bahandokumen/jadwallembur.txt",
29
- "bahandokumen/absensi.txt",
30
- "bahandokumen/sisacuti.txt"
31
- ]).load_data()
32
-
33
- # Embed the documents using HuggingFace Embeddings
34
- embedding = HuggingFaceEmbedding("BAAI/bge-base-en-v1.5")
35
- nodes = [doc for doc in documents]
36
- index = VectorStoreIndex(nodes)
37
-
38
- # Retriever and chat engine setup
39
- retriever = index.as_retriever(similarity_top_k=3)
40
- chat_engine = CondensePlusContextChatEngine.from_defaults(
41
- retriever=retriever,
42
- verbose=True,
43
- )
44
-
45
- # Chat reset function
46
- def clear_history():
47
- chat_engine.reset()
48
-
49
- # Chat response generator
50
- def generate_response(message, history):
51
- response = chat_engine.chat(message)
52
- text = ""
53
- for token in response.response_gen:
54
- text += token
55
- yield text
56
-
57
- # Gradio UI setup
58
- with gr.Blocks() as demo:
59
- clear_btn = gr.Button("Clear")
60
- clear_btn.click(clear_history)
61
- chat_interface = gr.ChatInterface(fn=generate_response, clear_btn=clear_btn)
62
-
63
- demo.launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Import Library yang Diperlukan
2
  import gradio as gr
3
+ import shutil
4
+ import os
5
+ import subprocess
6
  from llama_cpp import Llama
7
+ from llama_index.core import SimpleDirectoryReader, VectorStoreIndex, Settings
8
+ from llama_index.core.llms import ChatMessage
9
+ from llama_index.llms.llama_cpp import LlamaCPP
10
  from llama_index.embeddings.huggingface import HuggingFaceEmbedding
11
+ from huggingface_hub import hf_hub_download
12
+ from llama_index.core.node_parser import SentenceSplitter
13
 
14
+ # Fungsi untuk memasang ulang llama-cpp-python dengan dukungan CUDA
15
+ def install_llama_with_cuda():
16
+ try:
17
+ # Baca file requirements.txt
18
+ with open("requirements.txt", "r") as f:
19
+ packages = f.read().splitlines()
20
+
21
+ # Install setiap paket dengan CMAKE_ARGS untuk dukungan CUDA
22
+ for package in packages:
23
+ subprocess.run(
24
+ env={"CMAKE_ARGS": "-DGGML_CUDA=on"},
25
+ check=True
26
+ )
27
+ # Periksa apakah CUDA Toolkit tersedia
28
+ if not shutil.which("nvcc"):
29
+ print("CUDA Toolkit tidak ditemukan. Pastikan sudah diinstal.")
30
+ return
31
+
32
+ print("Memasang ulang llama-cpp-python dengan dukungan CUDA...")
33
+
34
+ print("llama-cpp-python berhasil diinstal ulang dengan dukungan CUDA.")
35
+ except subprocess.CalledProcessError as e:
36
+ print(f"Error saat menginstal ulang llama-cpp-python: {e}")
37
+ except Exception as e:
38
+ print(f"Kesalahan umum: {e}")
39
+
40
+ # Fungsi untuk mengunduh model Llama
41
  def initialize_llama_model():
42
+ # Unduh model jika belum ada di direktori kerja
43
+ model_path = hf_hub_download(
44
  repo_id="TheBLoke/zephyr-7b-beta-GGUF", # Nama repo model
45
  filename="zephyr-7b-beta.Q4_K_M.gguf", # Nama file model
46
  cache_dir="./models" # Lokasi direktori untuk menyimpan model
47
  )
48
  return model_path
49
 
50
+ # Fungsi untuk mengatur konfigurasi Settings
51
  def initialize_settings(model_path):
52
  Settings.llm = Llama(
53
  model_path=model_path,
 
56
  top_p=0.9 # Mengurangi eksplorasi token
57
  )
58
 
59
+ # Fungsi untuk Menginisialisasi Index
60
+ def initialize_index():
61
+ # Tentukan dokumen input untuk pembacaan data
62
+ documents = SimpleDirectoryReader(input_files=["bahandokumen/K3.txt",
63
+ "bahandokumen/bonus.txt",
64
+ "bahandokumen/cuti.txt",
65
+ "bahandokumen/disiplinkerja.txt",
66
+ "bahandokumen/fasilitas&bantuan.txt",
67
+ "bahandokumen/upahlembur.txt",
68
+ "bahandokumen/waktukerja.txt"]).load_data()
69
+
70
+ parser = SentenceSplitter(chunk_size=150, chunk_overlap=10)
71
+ nodes = parser.get_nodes_from_documents(documents)
72
+ embedding = HuggingFaceEmbedding("BAAI/bge-base-en-v1.5")
73
+ Settings.embed_model = embedding
74
+ index = VectorStoreIndex(nodes)
75
+ return index
76
+
77
+ # Inisialisasi Mesin Chat
78
+ def initialize_chat_engine(index):
79
+ from llama_index.core.prompts import PromptTemplate
80
+ from llama_index.core.chat_engine.condense_plus_context import CondensePlusContextChatEngine
81
+ retriever = index.as_retriever(similarity_top_k=3)
82
+ chat_engine = CondensePlusContextChatEngine.from_defaults(
83
+ retriever=retriever,
84
+ verbose=True,
85
+ )
86
+ return chat_engine
87
+
88
+ # Fungsi untuk menghasilkan respons chatbot
89
+ def generate_response(message, history, chat_engine):
90
+ chat_messages = [
91
+ ChatMessage(
92
+ role="system",
93
+ content="Anda adalah chatbot yang selalu menjawab pertanyaan secara singkat, ramah, dan jelas dalam bahasa Indonesia."
94
+ ),
95
+ ]
96
+ response = chat_engine.stream_chat(message)
97
+ text = "".join(response.response_gen) # Gabungkan semua token menjadi string
98
+ history.append((message, text)) # Tambahkan ke riwayat
99
+ return history
100
+
101
+ def clear_history(chat_engine):
102
+ chat_engine.clear()
103
+
104
+ # Inisialisasi Komponen Gradio untuk UI
105
+ def launch_gradio(chat_engine):
106
+ with gr.Blocks() as demo:
107
+ # Mengatur tombol untuk menghapus riwayat chat
108
+ clear_btn = gr.Button("Clear")
109
+ clear_btn.click(lambda: clear_history(chat_engine))
110
+
111
+ # Membuat antarmuka chat
112
+ chat_interface = gr.ChatInterface(
113
+ lambda message, history: generate_response(message, history, chat_engine)
114
+ )
115
+ demo.launch()
116
+
117
+ # Fungsi Utama untuk Menjalankan Aplikasi
118
+ def main():
119
+ install_llama_with_cuda()
120
+ # Unduh model dan inisialisasi pengaturan
121
+ model_path = initialize_llama_model()
122
+ initialize_settings(model_path) # Mengirimkan model_path ke fungsi initialize_settings
123
+ # Inisialisasi index dan engine
124
+ index = initialize_index()
125
+ chat_engine = initialize_chat_engine(index)
126
+ # Luncurkan antarmuka
127
+ launch_gradio(chat_engine)
128
+
129
+ if __name__ == "__main__":
130
+ main()