Update app.py
Browse files
app.py
CHANGED
@@ -13,39 +13,31 @@ from llama_index.core.chat_engine.condense_plus_context import CondensePlusConte
|
|
13 |
from llama_index.core.schema import Document
|
14 |
|
15 |
# ===================================
|
16 |
-
# 1οΈβ£ Fungsi untuk Membaca Google Spreadsheet
|
17 |
# ===================================
|
18 |
-
def
|
19 |
try:
|
20 |
-
# Tentukan scope akses ke Google Sheets & Drive
|
21 |
scope = ["https://www.googleapis.com/auth/spreadsheets", "https://www.googleapis.com/auth/drive"]
|
22 |
-
|
23 |
-
# Load kredensial dari file credentials.json
|
24 |
creds = ServiceAccountCredentials.from_json_keyfile_name("credentials.json", scope)
|
25 |
client = gspread.authorize(creds)
|
26 |
|
27 |
-
|
28 |
-
|
29 |
-
SHEET_NAME = "datatarget" # πΉ Ganti dengan nama sheet
|
30 |
|
31 |
-
|
32 |
spreadsheet = client.open_by_key(SPREADSHEET_ID)
|
33 |
-
sheet = spreadsheet.worksheet(SHEET_NAME)
|
34 |
-
|
35 |
-
# Ambil semua data dalam bentuk list (baris & kolom)
|
36 |
-
data = sheet.get_all_values()
|
37 |
-
|
38 |
-
# Format ulang data menjadi satu teks panjang (dapat disesuaikan)
|
39 |
-
formatted_text = "\n".join([" | ".join(row) for row in data])
|
40 |
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
|
|
|
|
|
|
49 |
except Exception as e:
|
50 |
return f"β ERROR: {str(e)}"
|
51 |
|
@@ -54,8 +46,8 @@ def read_google_sheet():
|
|
54 |
# ===================================
|
55 |
def initialize_llama_model():
|
56 |
model_path = hf_hub_download(
|
57 |
-
repo_id="TheBLoke/zephyr-7b-beta-GGUF",
|
58 |
-
filename="zephyr-7b-beta.Q4_K_M.gguf",
|
59 |
cache_dir="./models"
|
60 |
)
|
61 |
return model_path
|
@@ -73,22 +65,16 @@ def initialize_settings(model_path):
|
|
73 |
# 4οΈβ£ Inisialisasi Index dari Data Spreadsheet
|
74 |
# ===================================
|
75 |
def initialize_index():
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
document = Document(text=text_data) # πΉ Ubah teks menjadi objek `Document`
|
81 |
-
documents = [document] # πΉ Masukkan ke dalam list
|
82 |
-
|
83 |
-
# πΉ Proses data menjadi node untuk vektor embedding
|
84 |
parser = SentenceSplitter(chunk_size=150, chunk_overlap=10)
|
85 |
-
nodes = parser.get_nodes_from_documents(documents)
|
86 |
-
|
87 |
-
# πΉ Gunakan model embedding
|
88 |
embedding = HuggingFaceEmbedding("sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2")
|
89 |
Settings.embed_model = embedding
|
90 |
-
|
91 |
-
# πΉ Buat index vektor
|
92 |
index = VectorStoreIndex(nodes)
|
93 |
return index
|
94 |
|
@@ -110,23 +96,20 @@ def generate_response(message, history, chat_engine):
|
|
110 |
if history is None:
|
111 |
history = []
|
112 |
|
113 |
-
|
114 |
-
text_data = read_google_sheet()
|
115 |
document = Document(text=text_data)
|
116 |
documents = [document]
|
117 |
-
|
118 |
-
# πΉ Perbarui index dengan data terbaru
|
119 |
parser = SentenceSplitter(chunk_size=150, chunk_overlap=10)
|
120 |
nodes = parser.get_nodes_from_documents(documents)
|
121 |
index = VectorStoreIndex(nodes)
|
122 |
retriever = index.as_retriever(similarity_top_k=3)
|
123 |
-
|
124 |
-
# πΉ Buat ulang chat engine dengan index yang diperbarui
|
125 |
chat_engine = CondensePlusContextChatEngine.from_defaults(
|
126 |
retriever=retriever,
|
127 |
verbose=True,
|
128 |
)
|
129 |
-
|
130 |
chat_messages = [
|
131 |
ChatMessage(
|
132 |
role="system",
|
@@ -138,11 +121,10 @@ def generate_response(message, history, chat_engine):
|
|
138 |
"Fokuslah memberikan jawaban yang akurat dan relevan sesuai dengan dokumen yang tersedia."
|
139 |
),
|
140 |
]
|
141 |
-
|
142 |
-
# πΉ Gunakan chat engine baru untuk menjawab pertanyaan
|
143 |
response = chat_engine.stream_chat(message)
|
144 |
text = "".join(response.response_gen)
|
145 |
-
|
146 |
history.append((message, text))
|
147 |
return history
|
148 |
|
|
|
13 |
from llama_index.core.schema import Document
|
14 |
|
15 |
# ===================================
|
16 |
+
# 1οΈβ£ Fungsi untuk Membaca Google Spreadsheet dari Beberapa Worksheet
|
17 |
# ===================================
|
18 |
+
def read_google_sheets():
|
19 |
try:
|
|
|
20 |
scope = ["https://www.googleapis.com/auth/spreadsheets", "https://www.googleapis.com/auth/drive"]
|
|
|
|
|
21 |
creds = ServiceAccountCredentials.from_json_keyfile_name("credentials.json", scope)
|
22 |
client = gspread.authorize(creds)
|
23 |
|
24 |
+
SPREADSHEET_ID = "1e_cNMhwF-QYpyYUpqQh-XCw-OdhWS6EuYsoBUsVtdNg"
|
25 |
+
sheet_names = ["datatarget", "dataabsen", "datacuti", "datalembur"] # πΉ Daftar sheet yang akan dibaca
|
|
|
26 |
|
27 |
+
combined_text = ""
|
28 |
spreadsheet = client.open_by_key(SPREADSHEET_ID)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
+
for sheet_name in sheet_names:
|
31 |
+
try:
|
32 |
+
sheet = spreadsheet.worksheet(sheet_name)
|
33 |
+
data = sheet.get_all_values()
|
34 |
+
formatted_text = f"\n=== Data dari {sheet_name} ===\n"
|
35 |
+
formatted_text += "\n".join([" | ".join(row) for row in data])
|
36 |
+
combined_text += formatted_text + "\n"
|
37 |
+
except gspread.exceptions.WorksheetNotFound:
|
38 |
+
combined_text += f"\nβ ERROR: Worksheet '{sheet_name}' tidak ditemukan!\n"
|
39 |
+
|
40 |
+
return combined_text.strip()
|
41 |
except Exception as e:
|
42 |
return f"β ERROR: {str(e)}"
|
43 |
|
|
|
46 |
# ===================================
|
47 |
def initialize_llama_model():
|
48 |
model_path = hf_hub_download(
|
49 |
+
repo_id="TheBLoke/zephyr-7b-beta-GGUF",
|
50 |
+
filename="zephyr-7b-beta.Q4_K_M.gguf",
|
51 |
cache_dir="./models"
|
52 |
)
|
53 |
return model_path
|
|
|
65 |
# 4οΈβ£ Inisialisasi Index dari Data Spreadsheet
|
66 |
# ===================================
|
67 |
def initialize_index():
|
68 |
+
text_data = read_google_sheets()
|
69 |
+
document = Document(text=text_data)
|
70 |
+
documents = [document]
|
71 |
+
|
|
|
|
|
|
|
|
|
72 |
parser = SentenceSplitter(chunk_size=150, chunk_overlap=10)
|
73 |
+
nodes = parser.get_nodes_from_documents(documents)
|
74 |
+
|
|
|
75 |
embedding = HuggingFaceEmbedding("sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2")
|
76 |
Settings.embed_model = embedding
|
77 |
+
|
|
|
78 |
index = VectorStoreIndex(nodes)
|
79 |
return index
|
80 |
|
|
|
96 |
if history is None:
|
97 |
history = []
|
98 |
|
99 |
+
text_data = read_google_sheets()
|
|
|
100 |
document = Document(text=text_data)
|
101 |
documents = [document]
|
102 |
+
|
|
|
103 |
parser = SentenceSplitter(chunk_size=150, chunk_overlap=10)
|
104 |
nodes = parser.get_nodes_from_documents(documents)
|
105 |
index = VectorStoreIndex(nodes)
|
106 |
retriever = index.as_retriever(similarity_top_k=3)
|
107 |
+
|
|
|
108 |
chat_engine = CondensePlusContextChatEngine.from_defaults(
|
109 |
retriever=retriever,
|
110 |
verbose=True,
|
111 |
)
|
112 |
+
|
113 |
chat_messages = [
|
114 |
ChatMessage(
|
115 |
role="system",
|
|
|
121 |
"Fokuslah memberikan jawaban yang akurat dan relevan sesuai dengan dokumen yang tersedia."
|
122 |
),
|
123 |
]
|
124 |
+
|
|
|
125 |
response = chat_engine.stream_chat(message)
|
126 |
text = "".join(response.response_gen)
|
127 |
+
|
128 |
history.append((message, text))
|
129 |
return history
|
130 |
|