BramLeo commited on
Commit
9223e62
·
verified ·
1 Parent(s): a510538

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +55 -44
app.py CHANGED
@@ -1,9 +1,8 @@
1
- import json
2
  import gradio as gr
3
  import gspread
4
  from oauth2client.service_account import ServiceAccountCredentials
5
  from llama_cpp import Llama
6
- from llama_index.core import VectorStoreIndex, Settings
7
  from llama_index.core.node_parser import SentenceSplitter
8
  from llama_index.embeddings.huggingface import HuggingFaceEmbedding
9
  from llama_index.llms.llama_cpp import LlamaCPP
@@ -12,9 +11,9 @@ from llama_index.core.llms import ChatMessage
12
  from llama_index.core.chat_engine.condense_plus_context import CondensePlusContextChatEngine
13
  from llama_index.core.schema import Document
14
 
15
- # ===================================
16
- # 1️⃣ Fungsi Membaca Data Google Spreadsheet
17
- # ===================================
18
  def read_google_sheets():
19
  try:
20
  scope = ["https://www.googleapis.com/auth/spreadsheets", "https://www.googleapis.com/auth/drive"]
@@ -22,7 +21,7 @@ def read_google_sheets():
22
  client = gspread.authorize(creds)
23
 
24
  SPREADSHEET_ID = "1e_cNMhwF-QYpyYUpqQh-XCw-OdhWS6EuYsoBUsVtdNg"
25
- sheet_names = ["datatarget", "datacuti", "dataabsen", "datalembur", "pkb"]
26
 
27
  all_data = []
28
  spreadsheet = client.open_by_key(SPREADSHEET_ID)
@@ -45,9 +44,31 @@ def read_google_sheets():
45
  except Exception as e:
46
  return f"❌ ERROR: {str(e)}"
47
 
48
- # ===================================
49
- # 2️⃣ Inisialisasi Model Llama
50
- # ===================================
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51
  def initialize_llama_model():
52
  model_path = hf_hub_download(
53
  repo_id="TheBLoke/zephyr-7b-beta-GGUF",
@@ -56,20 +77,23 @@ def initialize_llama_model():
56
  )
57
  return model_path
58
 
59
- # ===================================
60
- # 3️⃣ Inisialisasi Pengaturan Model
61
- # ===================================
62
  def initialize_settings(model_path):
63
  Settings.llm = LlamaCPP(model_path=model_path, temperature=0.7)
64
 
65
- # ===================================
66
- # 4️⃣ Inisialisasi Index & Chat Engine
67
- # ===================================
68
  def initialize_index():
69
  text_data = read_google_sheets()
70
  document = Document(text=text_data)
71
- parser = SentenceSplitter(chunk_size=100, chunk_overlap=30)
72
- nodes = parser.get_nodes_from_documents([document])
 
 
 
73
 
74
  embedding = HuggingFaceEmbedding("sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2")
75
  Settings.embed_model = embedding
@@ -77,26 +101,17 @@ def initialize_index():
77
  index = VectorStoreIndex(nodes)
78
  return index
79
 
 
 
 
80
  def initialize_chat_engine(index):
81
  retriever = index.as_retriever(similarity_top_k=3)
82
- chat_engine = CondensePlusContextChatEngine.from_defaults(
83
- retriever=retriever,
84
- verbose=False # ❌ Hapus verbose agar tidak ada referensi dokumen
85
- )
86
  return chat_engine
87
 
88
- # ===================================
89
- # 5️⃣ Fungsi untuk Merapikan Jawaban Chatbot
90
- # ===================================
91
- def clean_response(response):
92
- text = "".join(response.response_gen) # Gabungkan teks yang dihasilkan
93
- text = text.replace("\n\n", "\n").strip() # Hilangkan newline berlebihan
94
- text = text.replace("user:", "").replace("jawaban:", "").replace("assistant:", "").strip()
95
- return text
96
-
97
- # ===================================
98
- # 6️⃣ Fungsi untuk Menghasilkan Respons Chatbot
99
- # ===================================
100
  def generate_response(message, history, chat_engine):
101
  if history is None:
102
  history = []
@@ -119,24 +134,20 @@ def generate_response(message, history, chat_engine):
119
  history.append((message, cleaned_text)) # 🔹 Pastikan hanya teks yang masuk ke history
120
  return cleaned_text
121
 
122
- # ===================================
123
- # 7️⃣ Fungsi Utama untuk Menjalankan Aplikasi
124
- # ===================================
125
  def main():
126
  model_path = initialize_llama_model()
127
  initialize_settings(model_path)
128
-
129
  index = initialize_index()
130
  chat_engine = initialize_chat_engine(index)
131
-
132
  def chatbot_response(message, history):
133
  return generate_response(message, history, chat_engine)
134
-
135
- gr.Interface(
136
- fn=chatbot_response,
137
- inputs=["text"],
138
- outputs=["text"],
139
- ).launch()
140
 
141
  if __name__ == "__main__":
142
  main()
 
 
1
  import gradio as gr
2
  import gspread
3
  from oauth2client.service_account import ServiceAccountCredentials
4
  from llama_cpp import Llama
5
+ from llama_index.core import SimpleDirectoryReader, VectorStoreIndex, Settings
6
  from llama_index.core.node_parser import SentenceSplitter
7
  from llama_index.embeddings.huggingface import HuggingFaceEmbedding
8
  from llama_index.llms.llama_cpp import LlamaCPP
 
11
  from llama_index.core.chat_engine.condense_plus_context import CondensePlusContextChatEngine
12
  from llama_index.core.schema import Document
13
 
14
+ # ==============================
15
+ # 1️⃣ Fungsi Membaca Data Google Spreadsheet (Cuti, Lembur, Absen, Target)
16
+ # ==============================
17
  def read_google_sheets():
18
  try:
19
  scope = ["https://www.googleapis.com/auth/spreadsheets", "https://www.googleapis.com/auth/drive"]
 
21
  client = gspread.authorize(creds)
22
 
23
  SPREADSHEET_ID = "1e_cNMhwF-QYpyYUpqQh-XCw-OdhWS6EuYsoBUsVtdNg"
24
+ sheet_names = ["datatarget", "datacuti", "dataabsen", "datalembur"]
25
 
26
  all_data = []
27
  spreadsheet = client.open_by_key(SPREADSHEET_ID)
 
44
  except Exception as e:
45
  return f"❌ ERROR: {str(e)}"
46
 
47
+ # ==============================
48
+ # 2️⃣ Fungsi Membaca Data dari File TXT (PKB dan Dokumen Lainnya)
49
+ # ==============================
50
+ def read_txt_documents():
51
+ documents = SimpleDirectoryReader(input_files=[
52
+ "bahandokumen/K3.txt", "bahandokumen/bonus.txt", "bahandokumen/absensi.txt",
53
+ "bahandokumen/cuti.txt", "bahandokumen/disiplinkerja.txt", "bahandokumen/fasilitas&bantuan.txt",
54
+ "bahandokumen/fasilitaskerja.txt", "bahandokumen/hak.txt", "bahandokumen/hubunganpengusaha&serikat.txt",
55
+ "bahandokumen/istilah.txt", "bahandokumen/jaminanserikat.txt", "bahandokumen/jamkes.txt",
56
+ "bahandokumen/jamsos.txt", "bahandokumen/keluhkesah.txt", "bahandokumen/kenaikanupah.txt",
57
+ "bahandokumen/kewajiban.txt", "bahandokumen/kompensasi.txt", "bahandokumen/larangan.txt",
58
+ "bahandokumen/lembur.txt", "bahandokumen/luaskesepakatan.txt", "bahandokumen/mogok.txt",
59
+ "bahandokumen/pelanggaran&sanksi.txt", "bahandokumen/pendidikan.txt", "bahandokumen/pengangkatan.txt",
60
+ "bahandokumen/penilaian&promosi.txt", "bahandokumen/pensiun.txt", "bahandokumen/perjadin.txt",
61
+ "bahandokumen/pesangon.txt", "bahandokumen/phk.txt", "bahandokumen/pihak.txt", "bahandokumen/pkb.txt",
62
+ "bahandokumen/resign.txt", "bahandokumen/sanksi.txt", "bahandokumen/shift.txt", "bahandokumen/syaratkerja.txt",
63
+ "bahandokumen/sisacuti.txt", "bahandokumen/target.txt", "bahandokumen/tatacara.txt", "bahandokumen/tka.txt",
64
+ "bahandokumen/tunjangan.txt", "bahandokumen/uangpisah.txt", "bahandokumen/upah.txt", "bahandokumen/upahlembur.txt",
65
+ "bahandokumen/waktukerja.txt"
66
+ ]).load_data()
67
+ return documents
68
+
69
+ # ==============================
70
+ # 3️⃣ Inisialisasi Model Llama
71
+ # ==============================
72
  def initialize_llama_model():
73
  model_path = hf_hub_download(
74
  repo_id="TheBLoke/zephyr-7b-beta-GGUF",
 
77
  )
78
  return model_path
79
 
80
+ # ==============================
81
+ # 4️⃣ Inisialisasi Pengaturan Model
82
+ # ==============================
83
  def initialize_settings(model_path):
84
  Settings.llm = LlamaCPP(model_path=model_path, temperature=0.7)
85
 
86
+ # ==============================
87
+ # 5️⃣ Inisialisasi Index
88
+ # ==============================
89
  def initialize_index():
90
  text_data = read_google_sheets()
91
  document = Document(text=text_data)
92
+ txt_documents = read_txt_documents()
93
+
94
+ all_documents = [document] + txt_documents # Gabungkan dokumen CSV dan TXT
95
+ parser = SentenceSplitter(chunk_size=150, chunk_overlap=10)
96
+ nodes = parser.get_nodes_from_documents(all_documents)
97
 
98
  embedding = HuggingFaceEmbedding("sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2")
99
  Settings.embed_model = embedding
 
101
  index = VectorStoreIndex(nodes)
102
  return index
103
 
104
+ # ==============================
105
+ # 6️⃣ Inisialisasi Chat Engine
106
+ # ==============================
107
  def initialize_chat_engine(index):
108
  retriever = index.as_retriever(similarity_top_k=3)
109
+ chat_engine = CondensePlusContextChatEngine.from_defaults(retriever=retriever, verbose=False)
 
 
 
110
  return chat_engine
111
 
112
+ # ==============================
113
+ # 7️⃣ Fungsi untuk Menjawab Chat
114
+ # ==============================
 
 
 
 
 
 
 
 
 
115
  def generate_response(message, history, chat_engine):
116
  if history is None:
117
  history = []
 
134
  history.append((message, cleaned_text)) # 🔹 Pastikan hanya teks yang masuk ke history
135
  return cleaned_text
136
 
137
+ # ==============================
138
+ # 8️⃣ Fungsi Utama Menjalankan Aplikasi
139
+ # ==============================
140
  def main():
141
  model_path = initialize_llama_model()
142
  initialize_settings(model_path)
143
+
144
  index = initialize_index()
145
  chat_engine = initialize_chat_engine(index)
146
+
147
  def chatbot_response(message, history):
148
  return generate_response(message, history, chat_engine)
149
+
150
+ gr.Interface(fn=chatbot_response, inputs="text", outputs="text").launch()
 
 
 
 
151
 
152
  if __name__ == "__main__":
153
  main()