BramLeo commited on
Commit
dc383bb
·
verified ·
1 Parent(s): c465f60

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +26 -113
app.py CHANGED
@@ -12,78 +12,28 @@ from llama_index.core.llms import ChatMessage
12
  from llama_index.core.chat_engine.condense_plus_context import CondensePlusContextChatEngine
13
  from llama_index.core.schema import Document
14
 
15
- # ===================================
16
- # 1️⃣ Fungsi Membaca Data PKB.json
17
- # ===================================
18
- def read_pkb_json():
19
- try:
20
- with open("pkb.json", "r", encoding="utf-8") as file:
21
- data = json.load(file)
22
-
23
- pkb_text = "=== Perjanjian Kerja Bersama ===\n"
24
- for bab, content in data["perjanjian_kerja_bersama"].items():
25
- pkb_text += f"\n## {content['judul']} ##\n"
26
- for pasal, pasal_data in content.items():
27
- if pasal != "judul":
28
- pkb_text += f"\n### {pasal_data['judul']} ###\n"
29
- for item in pasal_data["isi"]:
30
- if isinstance(item, dict):
31
- pkb_text += f"- {item['istilah']}: {item['definisi']}\n"
32
- else:
33
- pkb_text += f"- {item}\n"
34
- return pkb_text
35
- except Exception as e:
36
- return f"❌ ERROR membaca PKB.json: {str(e)}"
37
-
38
- # ===================================
39
- # 2️⃣ Fungsi Membaca Data Google Spreadsheet
40
- # ===================================
41
  def read_google_sheets():
42
  try:
43
- # Tentukan scope akses ke Google Sheets & Drive
44
  scope = ["https://www.googleapis.com/auth/spreadsheets", "https://www.googleapis.com/auth/drive"]
45
-
46
- # Load kredensial dari file credentials.json
47
  creds = ServiceAccountCredentials.from_json_keyfile_name("credentials.json", scope)
48
  client = gspread.authorize(creds)
49
-
50
- # ID Spreadsheet (tetap sama untuk semua sheet)
51
  SPREADSHEET_ID = "1e_cNMhwF-QYpyYUpqQh-XCw-OdhWS6EuYsoBUsVtdNg"
52
-
53
- # 📌 Daftar nama worksheet yang akan dibaca
54
  sheet_names = ["datatarget", "datacuti", "dataabsen", "datalembur", "pkb"]
55
-
56
- all_data = [] # 🔹 List untuk menyimpan semua data
57
-
58
- # 📌 Loop untuk membaca setiap worksheet
59
  spreadsheet = client.open_by_key(SPREADSHEET_ID)
60
  for sheet_name in sheet_names:
61
  try:
62
  sheet = spreadsheet.worksheet(sheet_name)
63
  data = sheet.get_all_values()
64
-
65
- # Tambahkan header nama sheet sebelum data untuk membedakan
66
- all_data.append(f"=== Data dari {sheet_name.upper()} ===")
67
  all_data.extend([" | ".join(row) for row in data])
68
- all_data.append("\n") # Pisahkan tiap sheet dengan newline
69
-
70
  except gspread.exceptions.WorksheetNotFound:
71
- all_data.append(f"ERROR: Worksheet {sheet_name} tidak ditemukan.")
72
-
73
- # Gabungkan semua data menjadi satu string panjang
74
- formatted_text = "\n".join(all_data)
75
-
76
- return formatted_text
77
-
78
  except gspread.exceptions.SpreadsheetNotFound:
79
- return "ERROR: Spreadsheet tidak ditemukan. Pastikan ID/nama benar!"
80
-
81
  except Exception as e:
82
- return f"ERROR: {str(e)}"
83
 
84
- # ===================================
85
- # 2️⃣ Fungsi untuk Mengunduh Model Llama
86
- # ===================================
87
  def initialize_llama_model():
88
  model_path = hf_hub_download(
89
  repo_id="TheBLoke/zephyr-7b-beta-GGUF",
@@ -92,102 +42,65 @@ def initialize_llama_model():
92
  )
93
  return model_path
94
 
95
- # ===================================
96
- # 3️⃣ Inisialisasi Model dan Pengaturan
97
- # ===================================
98
  def initialize_settings(model_path):
99
  Settings.llm = LlamaCPP(
100
  model_path=model_path,
101
  temperature=0.7,
102
  )
103
 
104
- # ===================================
105
- # 4️⃣ Inisialisasi Index dari Data Spreadsheet
106
- # ===================================
107
  def initialize_index():
108
- text_data = read_google_sheets() + "\n" + read_pkb_json()
109
  document = Document(text=text_data)
110
- documents = [document]
111
-
112
  parser = SentenceSplitter(chunk_size=150, chunk_overlap=10)
113
- nodes = parser.get_nodes_from_documents(documents)
114
-
115
- embedding = HuggingFaceEmbedding("sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2")
116
- Settings.embed_model = embedding
117
-
118
- index = VectorStoreIndex(nodes)
119
- return index
120
 
121
- # ===================================
122
- # 5️⃣ Inisialisasi Mesin Chatbot
123
- # ===================================
124
  def initialize_chat_engine(index):
125
  retriever = index.as_retriever(similarity_top_k=3)
126
- chat_engine = CondensePlusContextChatEngine.from_defaults(
127
  retriever=retriever,
128
- verbose=True,
129
  )
130
- return chat_engine
131
 
132
- # ===================================
133
- # 6️⃣ Fungsi untuk Menghasilkan Respons Chatbot
134
- # ===================================
135
  def generate_response(message, history, chat_engine):
136
  if history is None:
137
  history = []
138
-
139
- # 🔹 Baca ulang data dari Google Sheets & PKB
140
- text_data = read_google_sheets() + "\n" + read_pkb_json()
141
-
142
- document = Document(text=text_data)
143
- documents = [document]
144
-
145
- parser = SentenceSplitter(chunk_size=150, chunk_overlap=10)
146
- nodes = parser.get_nodes_from_documents(documents)
147
- index = VectorStoreIndex(nodes)
148
- retriever = index.as_retriever(similarity_top_k=3)
149
-
150
- chat_engine = CondensePlusContextChatEngine.from_defaults(
151
- retriever=retriever,
152
- verbose=True,
153
- )
154
-
155
  chat_messages = [
156
  ChatMessage(
157
  role="system",
158
  content=(
159
  "Anda adalah chatbot yang dirancang khusus untuk berbicara dalam Bahasa Indonesia. "
160
- "Anda tidak diperbolehkan menjawab dalam bahasa lain, termasuk Inggris. "
161
  "Gunakan gaya bahasa profesional tetapi tetap ramah. "
162
  "Jika informasi tidak tersedia dalam dokumen, katakan dengan sopan bahwa Anda tidak tahu. "
163
  "Pastikan setiap jawaban diberikan secara ringkas, jelas, dan sesuai konteks."
164
  ),
165
  ),
 
166
  ]
167
-
168
- response = chat_engine.stream_chat(message)
169
- text = "".join(response.response_gen)
170
-
171
- history.append((message, text))
172
- return history
173
 
174
- # ===================================
175
- # 7️⃣ Fungsi Utama untuk Menjalankan Aplikasi
176
- # ===================================
 
 
 
177
  def main():
178
  model_path = initialize_llama_model()
179
- initialize_settings(model_path)
180
-
181
  index = initialize_index()
182
- chat_engine = initialize_chat_engine(index)
183
 
184
  def chatbot_response(message, history):
185
- return generate_response(message, history, chat_engine)
186
 
187
  gr.Interface(
188
  fn=chatbot_response,
189
- inputs=["text"],
190
- outputs=["text"],
191
  ).launch()
192
 
193
  if __name__ == "__main__":
 
12
  from llama_index.core.chat_engine.condense_plus_context import CondensePlusContextChatEngine
13
  from llama_index.core.schema import Document
14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15
  def read_google_sheets():
16
  try:
 
17
  scope = ["https://www.googleapis.com/auth/spreadsheets", "https://www.googleapis.com/auth/drive"]
 
 
18
  creds = ServiceAccountCredentials.from_json_keyfile_name("credentials.json", scope)
19
  client = gspread.authorize(creds)
 
 
20
  SPREADSHEET_ID = "1e_cNMhwF-QYpyYUpqQh-XCw-OdhWS6EuYsoBUsVtdNg"
 
 
21
  sheet_names = ["datatarget", "datacuti", "dataabsen", "datalembur", "pkb"]
22
+ all_data = []
 
 
 
23
  spreadsheet = client.open_by_key(SPREADSHEET_ID)
24
  for sheet_name in sheet_names:
25
  try:
26
  sheet = spreadsheet.worksheet(sheet_name)
27
  data = sheet.get_all_values()
 
 
 
28
  all_data.extend([" | ".join(row) for row in data])
 
 
29
  except gspread.exceptions.WorksheetNotFound:
30
+ all_data.append(f"ERROR: Worksheet {sheet_name} tidak ditemukan.")
31
+ return "\n".join(all_data).strip()
 
 
 
 
 
32
  except gspread.exceptions.SpreadsheetNotFound:
33
+ return "ERROR: Spreadsheet tidak ditemukan."
 
34
  except Exception as e:
35
+ return f"ERROR: {str(e)}"
36
 
 
 
 
37
  def initialize_llama_model():
38
  model_path = hf_hub_download(
39
  repo_id="TheBLoke/zephyr-7b-beta-GGUF",
 
42
  )
43
  return model_path
44
 
 
 
 
45
  def initialize_settings(model_path):
46
  Settings.llm = LlamaCPP(
47
  model_path=model_path,
48
  temperature=0.7,
49
  )
50
 
 
 
 
51
  def initialize_index():
52
+ text_data = read_google_sheets()
53
  document = Document(text=text_data)
 
 
54
  parser = SentenceSplitter(chunk_size=150, chunk_overlap=10)
55
+ nodes = parser.get_nodes_from_documents([document])
56
+ Settings.embed_model = HuggingFaceEmbedding("sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2")
57
+ return VectorStoreIndex(nodes)
 
 
 
 
58
 
 
 
 
59
  def initialize_chat_engine(index):
60
  retriever = index.as_retriever(similarity_top_k=3)
61
+ return CondensePlusContextChatEngine.from_defaults(
62
  retriever=retriever,
63
+ verbose=False # Matikan verbose agar output lebih bersih
64
  )
 
65
 
 
 
 
66
  def generate_response(message, history, chat_engine):
67
  if history is None:
68
  history = []
69
+
70
+ # Prompt untuk memastikan jawaban tetap dalam Bahasa Indonesia
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71
  chat_messages = [
72
  ChatMessage(
73
  role="system",
74
  content=(
75
  "Anda adalah chatbot yang dirancang khusus untuk berbicara dalam Bahasa Indonesia. "
76
+ "Anda tidak diperbolehkan menjawab dalam bahasa lain. "
77
  "Gunakan gaya bahasa profesional tetapi tetap ramah. "
78
  "Jika informasi tidak tersedia dalam dokumen, katakan dengan sopan bahwa Anda tidak tahu. "
79
  "Pastikan setiap jawaban diberikan secara ringkas, jelas, dan sesuai konteks."
80
  ),
81
  ),
82
+ ChatMessage(role="user", content=message),
83
  ]
 
 
 
 
 
 
84
 
85
+ response = chat_engine.chat(chat_messages) # Menggunakan prompt secara eksplisit
86
+ text = response.response # Ambil teks respons dari model
87
+
88
+ history.append((message, text)) # Menyimpan riwayat percakapan dengan format yang benar
89
+ return text # Mengembalikan teks respons langsung tanpa simbol aneh
90
+
91
  def main():
92
  model_path = initialize_llama_model()
93
+ initialize_settings(model_path)
 
94
  index = initialize_index()
95
+ chat_engine = initialize_chat_engine(index)
96
 
97
  def chatbot_response(message, history):
98
+ return generate_response(message, chat_engine)
99
 
100
  gr.Interface(
101
  fn=chatbot_response,
102
+ inputs="text",
103
+ outputs="text",
104
  ).launch()
105
 
106
  if __name__ == "__main__":