Update app.py
Browse files
app.py
CHANGED
@@ -10,6 +10,7 @@ from llama_index.llms.llama_cpp import LlamaCPP
|
|
10 |
from huggingface_hub import hf_hub_download
|
11 |
from llama_index.core.llms import ChatMessage
|
12 |
from llama_index.core.chat_engine.condense_plus_context import CondensePlusContextChatEngine
|
|
|
13 |
|
14 |
# ===================================
|
15 |
# 1️⃣ Fungsi untuk Membaca Google Spreadsheet
|
@@ -75,17 +76,18 @@ def initialize_index():
|
|
75 |
# 🔹 Ambil teks dari Google Spreadsheet
|
76 |
text_data = read_google_sheet()
|
77 |
|
78 |
-
# 🔹 Konversi teks ke dalam format dokumen
|
79 |
-
|
|
|
80 |
|
81 |
# 🔹 Proses data menjadi node untuk vektor embedding
|
82 |
parser = SentenceSplitter(chunk_size=150, chunk_overlap=10)
|
83 |
-
nodes = parser.get_nodes_from_documents(documents)
|
84 |
-
|
85 |
# 🔹 Gunakan model embedding
|
86 |
embedding = HuggingFaceEmbedding("sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2")
|
87 |
Settings.embed_model = embedding
|
88 |
-
|
89 |
# 🔹 Buat index vektor
|
90 |
index = VectorStoreIndex(nodes)
|
91 |
return index
|
|
|
10 |
from huggingface_hub import hf_hub_download
|
11 |
from llama_index.core.llms import ChatMessage
|
12 |
from llama_index.core.chat_engine.condense_plus_context import CondensePlusContextChatEngine
|
13 |
+
from llama_index.core.schema import Document
|
14 |
|
15 |
# ===================================
|
16 |
# 1️⃣ Fungsi untuk Membaca Google Spreadsheet
|
|
|
76 |
# 🔹 Ambil teks dari Google Spreadsheet
|
77 |
text_data = read_google_sheet()
|
78 |
|
79 |
+
# 🔹 Konversi teks ke dalam format dokumen yang benar
|
80 |
+
document = Document(text=text_data) # 🔹 Ubah teks menjadi objek `Document`
|
81 |
+
documents = [document] # 🔹 Masukkan ke dalam list
|
82 |
|
83 |
# 🔹 Proses data menjadi node untuk vektor embedding
|
84 |
parser = SentenceSplitter(chunk_size=150, chunk_overlap=10)
|
85 |
+
nodes = parser.get_nodes_from_documents(documents) # ✅ Sekarang `documents` adalah list of `Document`
|
86 |
+
|
87 |
# 🔹 Gunakan model embedding
|
88 |
embedding = HuggingFaceEmbedding("sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2")
|
89 |
Settings.embed_model = embedding
|
90 |
+
|
91 |
# 🔹 Buat index vektor
|
92 |
index = VectorStoreIndex(nodes)
|
93 |
return index
|