Bram Vanroy
update with only Dutch
863e074
raw
history blame
4.68 kB
import json
from collections import defaultdict
from pathlib import Path
import pandas as pd
import gradio as gr
from content import *
from css import *
import glob
ARC = "arc"
HELLASWAG = "hellaswag"
MMLU = "mmlu"
TRUTHFULQA = "truthfulqa"
BENCHMARKS = [ARC, HELLASWAG, MMLU, TRUTHFULQA]
METRICS = ["acc_norm", "acc_norm", "acc_norm", "mc2"]
LANGS = "ar,bn,ca,da,de,es,eu,fr,gu,hi,hr,hu,hy,id,it,kn,ml,mr,ne,nl,pt,ro,ru,sk,sr,sv,ta,te,uk,vi,zh".split(",")
LANG_NAME = {
"ar": "Arabic",
"bn": "Bengali",
"ca": "Catalan",
"da": "Danish",
"de": "German",
"es": "Spanish",
"eu": "Basque",
"fr": "French",
"gu": "Gujarati",
"hi": "Hindi",
"hr": "Croatian",
"hu": "Hungarian",
"hy": "Armenian",
"id": "Indonesian",
"it": "Italian",
"kn": "Kannada",
"ml": "Malayalam",
"mr": "Marathi",
"ne": "Nepali",
"nl": "Dutch",
"pt": "Portuguese",
"ro": "Romanian",
"ru": "Russian",
"sk": "Slovak",
"sr": "Serbian",
"sv": "Swedish",
"ta": "Tamil",
"te": "Telugu",
"uk": "Ukrainian",
"vi": "Vietnamese",
"zh": "Chinese",
}
def collect_results():
performance_dict = defaultdict(dict)
pretrained_models = set()
for pfin in Path("evals").rglob("*.json"):
data = json.loads(pfin.read_text(encoding="utf-8"))
if "results" not in data:
continue
if "config" not in data:
continue
results = data["results"]
config = data["config"]
if "model_args" not in config:
continue
model_args = config["model_args"].split(",")
pretrained = [x for x in model_args if x.startswith("pretrained=")]
if len(pretrained) != 1:
continue
pretrained = pretrained[0].split("=")[1]
pretrained = pretrained.split("/")[-1]
pretrained_models.add(pretrained)
for lang_task, perfs in results.items():
task, lang = lang_task.split("_")
assert task in BENCHMARKS
if lang and task:
metric = METRICS[BENCHMARKS.index(task)]
p = round(perfs[metric] * 100, 1)
performance_dict[(pretrained, lang)][task] = p
return performance_dict, pretrained_models
def get_leaderboard_df(performance_dict, pretrained_models):
df = list()
for (pretrained, lang), perfs in performance_dict.items():
lang_name = LANG_NAME[lang]
arc_perf = perfs.get(ARC, 0.0)
hellaswag_perf = perfs.get(HELLASWAG, 0.0)
mmlu_perf = perfs.get(MMLU, 0.0)
truthfulqa_perf = perfs.get(TRUTHFULQA, 0.0)
avg = round((arc_perf + hellaswag_perf + mmlu_perf + truthfulqa_perf) / 4, 1)
notes = " ".join([pretrained, lang_name])
row = [pretrained, avg, arc_perf, hellaswag_perf, mmlu_perf, truthfulqa_perf, notes]
df.append(row)
df = pd.DataFrame.from_records(df, columns=COLS)
df = df.sort_values(by=[AVERAGE_COL], ascending=False)
df = df[COLS]
return df
def search_table(df, query):
filtered_df = df[df[NOTES_COL].str.contains(query, case=False)]
return filtered_df
MODEL_COL = "Model"
AVERAGE_COL = "Average"
ARC_COL = "ARC (25-shot)"
HELLASWAG_COL = "HellaSwag (10-shot)️"
MMLU_COL = "MMLU (5-shot)"
TRUTHFULQA_COL = "TruthfulQA (0-shot)"
NOTES_COL = "Notes" # For search only
COLS = [MODEL_COL, AVERAGE_COL, ARC_COL, HELLASWAG_COL, MMLU_COL, TRUTHFULQA_COL, NOTES_COL]
TYPES = ["str", "number", "number", "number", "number", "number", "str"]
args = collect_results()
original_df = get_leaderboard_df(*args)
demo = gr.Blocks(css=CUSTOM_CSS)
with demo:
gr.HTML(TITLE)
gr.Markdown(INTRO_TEXT, elem_classes="markdown-text")
gr.Markdown(HOW_TO, elem_classes="markdown-text")
with gr.Box():
search_bar = gr.Textbox(placeholder="Search models and languages...", show_label=False, elem_id="search-bar")
leaderboard_table = gr.components.Dataframe(
value=original_df,
headers=COLS,
datatype=TYPES,
max_rows=5,
elem_id="leaderboard-table",
)
# # Dummy leaderboard for handling the case when the user uses backspace key
hidden_leaderboard_table_for_search = gr.components.Dataframe(
value=original_df, headers=COLS, datatype=TYPES, max_rows=5, visible=False
)
search_bar.change(
search_table,
[hidden_leaderboard_table_for_search, search_bar],
leaderboard_table,
)
gr.Markdown(CREDIT, elem_classes="markdown-text")
gr.Markdown(CITATION, elem_classes="markdown-text")
demo.launch()