Bram Vanroy
commited on
Commit
·
809ba3d
1
Parent(s):
9739433
improve missing repr
Browse files
app.py
CHANGED
@@ -38,17 +38,18 @@ class Result:
|
|
38 |
model_type: Literal["pretrained", "fine-tuned", "instruction-tuned", "RL-tuned"]
|
39 |
dutch_coverage: Literal["none", "pretrained", "fine-tuned"]
|
40 |
num_parameters: int
|
41 |
-
arc: float = field(default=
|
42 |
-
average: float = field(default=
|
43 |
-
hellaswag: float = field(default=
|
44 |
-
mmlu: float = field(default=
|
45 |
-
truthfulqa: float = field(default=
|
46 |
num_parameters_kmb: str = field(init=False)
|
47 |
|
48 |
def __post_init__(self):
|
49 |
if self.model_type not in ["pretrained", "fine-tuned", "instruction-tuned", "RL-tuned", "not-given"]:
|
50 |
raise ValueError(
|
51 |
-
f"Model type {self.model_type} must be one of 'pretrained', 'fine-tuned',
|
|
|
52 |
)
|
53 |
if self.dutch_coverage not in ["none", "pretrained", "fine-tuned", "not-given"]:
|
54 |
raise ValueError(
|
@@ -60,7 +61,10 @@ class Result:
|
|
60 |
if task_name not in field_names:
|
61 |
raise ValueError(f"Task name {task_name} not found in Result class fields so cannot create DataFrame")
|
62 |
|
63 |
-
|
|
|
|
|
|
|
64 |
self.num_parameters_kmb = convert_number_to_kmb(self.num_parameters)
|
65 |
|
66 |
|
@@ -145,23 +149,22 @@ class ResultSet:
|
|
145 |
df = pd.DataFrame(data)
|
146 |
df = df.sort_values(by=self.column_names["average"], ascending=False)
|
147 |
number_cols = [col for attr, col in self.column_names.items() if attr in TASK_METRICS or attr == "average"]
|
148 |
-
styler = df.style.format("{:.2f}", subset=number_cols)
|
149 |
|
150 |
def highlight_max(col):
|
151 |
return np.where(col == np.nanmax(col.to_numpy()), "font-weight: bold;", None)
|
152 |
|
153 |
styler = styler.apply(highlight_max, axis=0, subset=number_cols)
|
154 |
-
|
155 |
num_params_col = self.column_names["num_parameters"]
|
156 |
styler = styler.format(convert_number_to_kmb, subset=num_params_col)
|
157 |
-
|
158 |
styler = styler.hide()
|
159 |
return styler
|
160 |
|
161 |
@cached_property
|
162 |
def latex_df(self) -> Styler:
|
163 |
number_cols = [col for attr, col in self.column_names.items() if attr in TASK_METRICS or attr == "average"]
|
164 |
-
styler = self.df.style.format("{:.2f}", subset=number_cols)
|
165 |
|
166 |
def highlight_max(col):
|
167 |
return np.where(col == np.nanmax(col.to_numpy()), "font-weight: bold;", None)
|
@@ -169,6 +172,7 @@ class ResultSet:
|
|
169 |
styler = styler.apply(highlight_max, axis=0, subset=number_cols)
|
170 |
num_params_col = self.column_names["num_parameters"]
|
171 |
styler = styler.format(convert_number_to_kmb, subset=num_params_col)
|
|
|
172 |
styler = styler.hide()
|
173 |
return styler
|
174 |
|
@@ -244,7 +248,8 @@ with gr.Blocks() as demo:
|
|
244 |
|
245 |
gr.Markdown(
|
246 |
f"## Leaderboard\nOnly representative for the Dutch version (`*_nl`) of the benchmarks!"
|
247 |
-
" All models have been benchmarked in 8-bit."
|
|
|
248 |
)
|
249 |
|
250 |
results = collect_results()
|
|
|
38 |
model_type: Literal["pretrained", "fine-tuned", "instruction-tuned", "RL-tuned"]
|
39 |
dutch_coverage: Literal["none", "pretrained", "fine-tuned"]
|
40 |
num_parameters: int
|
41 |
+
arc: float = field(default=np.nan)
|
42 |
+
average: float = field(default=np.nan, init=False)
|
43 |
+
hellaswag: float = field(default=np.nan)
|
44 |
+
mmlu: float = field(default=np.nan)
|
45 |
+
truthfulqa: float = field(default=np.nan)
|
46 |
num_parameters_kmb: str = field(init=False)
|
47 |
|
48 |
def __post_init__(self):
|
49 |
if self.model_type not in ["pretrained", "fine-tuned", "instruction-tuned", "RL-tuned", "not-given"]:
|
50 |
raise ValueError(
|
51 |
+
f"Model type {self.model_type} must be one of 'pretrained', 'fine-tuned',"
|
52 |
+
f" 'instruction-tuned', 'RL-tuned', 'not-given"
|
53 |
)
|
54 |
if self.dutch_coverage not in ["none", "pretrained", "fine-tuned", "not-given"]:
|
55 |
raise ValueError(
|
|
|
61 |
if task_name not in field_names:
|
62 |
raise ValueError(f"Task name {task_name} not found in Result class fields so cannot create DataFrame")
|
63 |
|
64 |
+
if any([np.isnan(getattr(self, task_name)) for task_name in TASK_METRICS]):
|
65 |
+
self.average = np.nan
|
66 |
+
else:
|
67 |
+
self.average = sum([getattr(self, task_name) for task_name in TASK_METRICS]) / 4
|
68 |
self.num_parameters_kmb = convert_number_to_kmb(self.num_parameters)
|
69 |
|
70 |
|
|
|
149 |
df = pd.DataFrame(data)
|
150 |
df = df.sort_values(by=self.column_names["average"], ascending=False)
|
151 |
number_cols = [col for attr, col in self.column_names.items() if attr in TASK_METRICS or attr == "average"]
|
152 |
+
styler = df.style.format("{:.2f}", subset=number_cols, na_rep="<missing>")
|
153 |
|
154 |
def highlight_max(col):
|
155 |
return np.where(col == np.nanmax(col.to_numpy()), "font-weight: bold;", None)
|
156 |
|
157 |
styler = styler.apply(highlight_max, axis=0, subset=number_cols)
|
|
|
158 |
num_params_col = self.column_names["num_parameters"]
|
159 |
styler = styler.format(convert_number_to_kmb, subset=num_params_col)
|
160 |
+
styler.set_caption("Leaderboard on Dutch benchmarks.")
|
161 |
styler = styler.hide()
|
162 |
return styler
|
163 |
|
164 |
@cached_property
|
165 |
def latex_df(self) -> Styler:
|
166 |
number_cols = [col for attr, col in self.column_names.items() if attr in TASK_METRICS or attr == "average"]
|
167 |
+
styler = self.df.style.format("{:.2f}", subset=number_cols, na_rep="<missing>")
|
168 |
|
169 |
def highlight_max(col):
|
170 |
return np.where(col == np.nanmax(col.to_numpy()), "font-weight: bold;", None)
|
|
|
172 |
styler = styler.apply(highlight_max, axis=0, subset=number_cols)
|
173 |
num_params_col = self.column_names["num_parameters"]
|
174 |
styler = styler.format(convert_number_to_kmb, subset=num_params_col)
|
175 |
+
styler.set_caption("Leaderboard on Dutch benchmarks.")
|
176 |
styler = styler.hide()
|
177 |
return styler
|
178 |
|
|
|
248 |
|
249 |
gr.Markdown(
|
250 |
f"## Leaderboard\nOnly representative for the Dutch version (`*_nl`) of the benchmarks!"
|
251 |
+
" All models have been benchmarked in 8-bit. `<missing>` values indicate that those benchmarks are still"
|
252 |
+
" pending."
|
253 |
)
|
254 |
|
255 |
results = collect_results()
|