import base64 from collections import Counter import graphviz import penman from multi_amr.data.postprocessing_graph import ParsedStatus from utils import get_resources, LANGUAGES, translate import streamlit as st st.set_page_config( page_title="Text-to-AMR demo by Bram Vanroy", page_icon="👩‍💻" ) st.title("👩‍💻 Multilingual text to AMR") if "text" not in st.session_state: st.session_state["text"] = "" if "language" not in st.session_state: st.session_state["language"] = "English" if "use_multilingual" not in st.session_state: st.session_state["use_multilingual"] = False text_col, lang_col = st.columns((4, 1)) text = text_col.text_input(label="Input text", key="text") src_lang = lang_col.selectbox(label="Language", options=list(LANGUAGES.keys()), index=0, key="language") multilingual = st.checkbox("Use multilingual model", label_visibility="visible", key="use_multilingual", help="Whether to use a single multilingual model that was trained on English, Spanish and" " Dutch together, or (if not checked) language-specific models. Enabling this will" " results in worse performance but can be of interest for research purposes.") error_ct = st.empty() if st.session_state["text"]: if st.button("Submit"): text = text.strip() error_ct.info("Generating abstract meaning representation (AMR)...", icon="💻") model, tokenizer = get_resources(multilingual, src_lang) gen_kwargs = { "max_new_tokens": 512, "num_beams": 5, } outputs = translate(text, src_lang, model, tokenizer, **gen_kwargs) error_ct.empty() if outputs["status"][0] == ParsedStatus.BACKOFF: st.write(f"The system could not generate a valid graph no matter how hard it tried.") else: graph = outputs["graph"][0] visualized = graphviz.Digraph(node_attr={"color": "#3aafa9", "style": "rounded,filled", "shape": "box", "fontcolor": "white"}) # Count which names occur multiple times, e.g. t/talk-01 t2/talk-01 nodename_c = Counter([item[2] for item in graph.triples if item[1] == ":instance"]) # Generated initial nodenames for each variable, e.g. {"t": "talk-01", "t2": "talk-01"} nodenames = {item[0]: item[2] for item in graph.triples if item[1] == ":instance"} # Modify nodenames, so that the values are unique, e.g. {"t": "talk-01 (1)", "t2": "talk-01 (2)"} # but only the value occurs more than once nodename_str_c = Counter() for varname in nodenames: nodename = nodenames[varname] if nodename_c[nodename] > 1: nodename_str_c[nodename] += 1 nodenames[varname] = f"{nodename} ({nodename_str_c[nodename]})" def get_node_name(item: str): return nodenames[item] if item in nodenames else item for triple in graph.triples: if triple[1] == ":instance": continue else: visualized.edge(get_node_name(triple[0]), get_node_name(triple[2]), label=triple[1]) st.subheader("Graph visualization") st.graphviz_chart(visualized, use_container_width=True) # Download link def create_download_link(img_bytes: bytes): encoded = base64.b64encode(img_bytes).decode("utf-8") return f'Download graph' img = visualized.pipe(format="png") st.markdown(create_download_link(img), unsafe_allow_html=True) # Additional info st.subheader("PENMAN representation") st.code(penman.encode(graph)) else: error_ct.warning("Text cannot be empty!", icon="⚠️") ######################## # Information, socials # ######################## st.header("SignON 🤟") st.markdown("""
SignON logo

SignON aims to bridge the communication gap between deaf, hard-of-hearing and hearing people through an accessible translation service. This service will translate between languages and modalities with particular attention for sign languages.

""", unsafe_allow_html=True) st.markdown("""[Abstract meaning representation](https://aclanthology.org/W13-2322/) (AMR) is a semantic framework to describe meaning relations of sentences as graphs. In the SignON project, AMR is used as an interlingua to translate between modalities and languages. To this end, I built MBART models for the task of generating linearized AMR representations from an input sentence, which is show-cased in this demo. """) st.header("Contact ✒️") st.markdown("Would you like additional functionality in the demo, do you have questions, or just want to get in touch?" " Give me a shout on [Twitter](https://twitter.com/BramVanroy)" " or add me on [LinkedIn](https://www.linkedin.com/in/bramvanroy/)!")