File size: 10,518 Bytes
5238467
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

from itertools import product
import random

import numpy as np
import torch
import torchaudio

from audiocraft.data.audio import audio_info, audio_read, audio_write, _av_read

from ..common_utils import TempDirMixin, get_white_noise, save_wav


class TestInfo(TempDirMixin):

    def test_info_mp3(self):
        sample_rates = [8000, 16_000]
        channels = [1, 2]
        duration = 1.
        for sample_rate, ch in product(sample_rates, channels):
            wav = get_white_noise(ch, int(sample_rate * duration))
            path = self.get_temp_path('sample_wav.mp3')
            save_wav(path, wav, sample_rate)
            info = audio_info(path)
            assert info.sample_rate == sample_rate
            assert info.channels == ch
            # we cannot trust torchaudio for num_frames, so we don't check

    def _test_info_format(self, ext: str):
        sample_rates = [8000, 16_000]
        channels = [1, 2]
        duration = 1.
        for sample_rate, ch in product(sample_rates, channels):
            n_frames = int(sample_rate * duration)
            wav = get_white_noise(ch, n_frames)
            path = self.get_temp_path(f'sample_wav{ext}')
            save_wav(path, wav, sample_rate)
            info = audio_info(path)
            assert info.sample_rate == sample_rate
            assert info.channels == ch
            assert np.isclose(info.duration, duration, atol=1e-5)

    def test_info_wav(self):
        self._test_info_format('.wav')

    def test_info_flac(self):
        self._test_info_format('.flac')

    def test_info_ogg(self):
        self._test_info_format('.ogg')

    def test_info_m4a(self):
        # TODO: generate m4a file programmatically
        # self._test_info_format('.m4a')
        pass


class TestRead(TempDirMixin):

    def test_read_full_wav(self):
        sample_rates = [8000, 16_000]
        channels = [1, 2]
        duration = 1.
        for sample_rate, ch in product(sample_rates, channels):
            n_frames = int(sample_rate * duration)
            wav = get_white_noise(ch, n_frames).clamp(-0.99, 0.99)
            path = self.get_temp_path('sample_wav.wav')
            save_wav(path, wav, sample_rate)
            read_wav, read_sr = audio_read(path)
            assert read_sr == sample_rate
            assert read_wav.shape[0] == wav.shape[0]
            assert read_wav.shape[1] == wav.shape[1]
            assert torch.allclose(read_wav, wav, rtol=1e-03, atol=1e-04)

    def test_read_partial_wav(self):
        sample_rates = [8000, 16_000]
        channels = [1, 2]
        duration = 1.
        read_duration = torch.rand(1).item()
        for sample_rate, ch in product(sample_rates, channels):
            n_frames = int(sample_rate * duration)
            read_frames = int(sample_rate * read_duration)
            wav = get_white_noise(ch, n_frames).clamp(-0.99, 0.99)
            path = self.get_temp_path('sample_wav.wav')
            save_wav(path, wav, sample_rate)
            read_wav, read_sr = audio_read(path, 0, read_duration)
            assert read_sr == sample_rate
            assert read_wav.shape[0] == wav.shape[0]
            assert read_wav.shape[1] == read_frames
            assert torch.allclose(read_wav[..., 0:read_frames], wav[..., 0:read_frames], rtol=1e-03, atol=1e-04)

    def test_read_seek_time_wav(self):
        sample_rates = [8000, 16_000]
        channels = [1, 2]
        duration = 1.
        read_duration = 1.
        for sample_rate, ch in product(sample_rates, channels):
            n_frames = int(sample_rate * duration)
            wav = get_white_noise(ch, n_frames).clamp(-0.99, 0.99)
            path = self.get_temp_path('sample_wav.wav')
            save_wav(path, wav, sample_rate)
            seek_time = torch.rand(1).item()
            read_wav, read_sr = audio_read(path, seek_time, read_duration)
            seek_frames = int(sample_rate * seek_time)
            expected_frames = n_frames - seek_frames
            assert read_sr == sample_rate
            assert read_wav.shape[0] == wav.shape[0]
            assert read_wav.shape[1] == expected_frames
            assert torch.allclose(read_wav, wav[..., seek_frames:], rtol=1e-03, atol=1e-04)

    def test_read_seek_time_wav_padded(self):
        sample_rates = [8000, 16_000]
        channels = [1, 2]
        duration = 1.
        read_duration = 1.
        for sample_rate, ch in product(sample_rates, channels):
            n_frames = int(sample_rate * duration)
            read_frames = int(sample_rate * read_duration)
            wav = get_white_noise(ch, n_frames).clamp(-0.99, 0.99)
            path = self.get_temp_path('sample_wav.wav')
            save_wav(path, wav, sample_rate)
            seek_time = torch.rand(1).item()
            seek_frames = int(sample_rate * seek_time)
            expected_frames = n_frames - seek_frames
            read_wav, read_sr = audio_read(path, seek_time, read_duration, pad=True)
            expected_pad_wav = torch.zeros(wav.shape[0], read_frames - expected_frames)
            assert read_sr == sample_rate
            assert read_wav.shape[0] == wav.shape[0]
            assert read_wav.shape[1] == read_frames
            assert torch.allclose(read_wav[..., :expected_frames], wav[..., seek_frames:], rtol=1e-03, atol=1e-04)
            assert torch.allclose(read_wav[..., expected_frames:], expected_pad_wav)


class TestAvRead(TempDirMixin):

    def test_avread_seek_base(self):
        sample_rates = [8000, 16_000]
        channels = [1, 2]
        duration = 2.
        for sample_rate, ch in product(sample_rates, channels):
            n_frames = int(sample_rate * duration)
            wav = get_white_noise(ch, n_frames)
            path = self.get_temp_path(f'reference_a_{sample_rate}_{ch}.wav')
            save_wav(path, wav, sample_rate)
            for _ in range(100):
                # seek will always load a full duration segment in the file
                seek_time = random.uniform(0.0, 1.0)
                seek_duration = random.uniform(0.001, 1.0)
                read_wav, read_sr = _av_read(path, seek_time, seek_duration)
                assert read_sr == sample_rate
                assert read_wav.shape[0] == wav.shape[0]
                assert read_wav.shape[-1] == int(seek_duration * sample_rate)

    def test_avread_seek_partial(self):
        sample_rates = [8000, 16_000]
        channels = [1, 2]
        duration = 1.
        for sample_rate, ch in product(sample_rates, channels):
            n_frames = int(sample_rate * duration)
            wav = get_white_noise(ch, n_frames)
            path = self.get_temp_path(f'reference_b_{sample_rate}_{ch}.wav')
            save_wav(path, wav, sample_rate)
            for _ in range(100):
                # seek will always load a partial segment
                seek_time = random.uniform(0.5, 1.)
                seek_duration = 1.
                expected_num_frames = n_frames - int(seek_time * sample_rate)
                read_wav, read_sr = _av_read(path, seek_time, seek_duration)
                assert read_sr == sample_rate
                assert read_wav.shape[0] == wav.shape[0]
                assert read_wav.shape[-1] == expected_num_frames

    def test_avread_seek_outofbound(self):
        sample_rates = [8000, 16_000]
        channels = [1, 2]
        duration = 1.
        for sample_rate, ch in product(sample_rates, channels):
            n_frames = int(sample_rate * duration)
            wav = get_white_noise(ch, n_frames)
            path = self.get_temp_path(f'reference_c_{sample_rate}_{ch}.wav')
            save_wav(path, wav, sample_rate)
            seek_time = 1.5
            read_wav, read_sr = _av_read(path, seek_time, 1.)
            assert read_sr == sample_rate
            assert read_wav.shape[0] == wav.shape[0]
            assert read_wav.shape[-1] == 0

    def test_avread_seek_edge(self):
        sample_rates = [8000, 16_000]
        # some of these values will have
        # int(((frames - 1) / sample_rate) * sample_rate) != (frames - 1)
        n_frames = [1000, 1001, 1002]
        channels = [1, 2]
        for sample_rate, ch, frames in product(sample_rates, channels, n_frames):
            duration = frames / sample_rate
            wav = get_white_noise(ch, frames)
            path = self.get_temp_path(f'reference_d_{sample_rate}_{ch}.wav')
            save_wav(path, wav, sample_rate)
            seek_time = (frames - 1) / sample_rate
            seek_frames = int(seek_time * sample_rate)
            read_wav, read_sr = _av_read(path, seek_time, duration)
            assert read_sr == sample_rate
            assert read_wav.shape[0] == wav.shape[0]
            assert read_wav.shape[-1] == (frames - seek_frames)


class TestAudioWrite(TempDirMixin):

    def test_audio_write_wav(self):
        torch.manual_seed(1234)
        sample_rates = [8000, 16_000]
        n_frames = [1000, 1001, 1002]
        channels = [1, 2]
        strategies = ["peak", "clip", "rms"]
        formats = ["wav", "mp3"]
        for sample_rate, ch, frames in product(sample_rates, channels, n_frames):
            for format_, strategy in product(formats, strategies):
                wav = get_white_noise(ch, frames)
                path = self.get_temp_path(f'pred_{sample_rate}_{ch}')
                audio_write(path, wav, sample_rate, format_, strategy=strategy)
                read_wav, read_sr = torchaudio.load(f'{path}.{format_}')
                if format_ == "wav":
                    assert read_wav.shape == wav.shape

                if format_ == "wav" and strategy in ["peak", "rms"]:
                    rescaled_read_wav = read_wav / read_wav.abs().max() * wav.abs().max()
                    # for a Gaussian, the typical max scale will be less than ~5x the std.
                    # The error when writing to disk will ~ 1/2**15, and when rescaling, 5x that.
                    # For RMS target, rescaling leaves more headroom by default, leading
                    # to a 20x rescaling typically
                    atol = (5 if strategy == "peak" else 20) / 2**15
                    delta = (rescaled_read_wav - wav).abs().max()
                    assert torch.allclose(wav, rescaled_read_wav, rtol=0, atol=atol), (delta, atol)
            formats = ["wav"]  # faster unit tests