File size: 9,824 Bytes
1edb956
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10b3494
 
 
 
 
 
 
 
 
1edb956
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10b3494
 
 
 
 
 
1edb956
 
 
10b3494
1edb956
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10b3494
1edb956
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

__all__ = ['block', 'make_clickable_model', 'make_clickable_user', 'get_submissions']

import gradio as gr
import pandas as pd
import json
import pdb
import tempfile

from constants import *
from src.auto_leaderboard.model_metadata_type import ModelType

global data_component, filter_component


def upload_file(files):
    file_paths = [file.name for file in files]
    return file_paths

def prediction_analyse(prediction_content):
    # pdb.set_trace()
    predictions = prediction_content.split("\n")

    # 读取 ground_truth JSON 文件
    with open("./file/SEED-Bench.json", "r") as file:
        ground_truth_data = json.load(file)["questions"]

    # 将 ground_truth 数据转换为以 question_id 为键的字典
    ground_truth = {item["question_id"]: item for item in ground_truth_data}

    # 初始化结果统计字典
    results = {i: {"correct": 0, "total": 0} for i in range(1, 13)}

    # 遍历 predictions,计算每个 question_type_id 的正确预测数和总预测数
    for prediction in predictions:
        # pdb.set_trace()
        prediction = prediction.strip()
        if not prediction:
            continue
        try:
            prediction = json.loads(prediction)
        except json.JSONDecodeError:
            print(f"Warning: Skipping invalid JSON data in line: {prediction}")
            continue
        question_id = prediction["question_id"]
        gt_item = ground_truth[question_id]
        question_type_id = gt_item["question_type_id"]

        if prediction["prediction"] == gt_item["answer"]:
            results[question_type_id]["correct"] += 1

        results[question_type_id]["total"] += 1
    
    return results

def add_new_eval(
    input_file,
    model_name_textbox: str,
    revision_name_textbox: str,
    model_type: str,
    model_link: str,
    LLM_type: str,
    LLM_name_textbox: str,
    Evaluation_dimension: str,
):
    if input_file is None:
        return "Error! Empty file!"
    else:
        content = input_file.decode("utf-8")
        prediction = prediction_analyse(content)
        each_task_accuracy = {i: round(prediction[i]["correct"] / prediction[i]["total"] * 100, 1) for i in range(1, 13)}

        # count for average image\video\all
        total_correct_image = sum(prediction[i]["correct"] for i in range(1, 10))
        total_correct_video = sum(prediction[i]["correct"] for i in range(10, 13))

        total_image = sum(prediction[i]["total"] for i in range(1, 10))
        total_video = sum(prediction[i]["total"] for i in range(10, 13))

        average_accuracy_image = round(total_correct_image / total_image * 100, 1)
        average_accuracy_video = round(total_correct_video / total_video * 100, 1)
        overall_accuracy = round((total_correct_image + total_correct_video) / (total_image + total_video) * 100, 1)

        if LLM_type == 'other':
            LLM_name = LLM_name_textbox
        else:
            LLM_name = LLM_type
        
        pdb.set_trace()
        if model_link == '':
            model_name = model_name_textbox  # no url
        else:
            model_name = '[' + model_name_textbox + '](' + model_link + ')'
        # add new data
        new_data = [
            model_type, 
            model_name, 
            LLM_name, 
            each_task_accuracy[1],
            each_task_accuracy[2],
            each_task_accuracy[3],
            each_task_accuracy[4],
            each_task_accuracy[5],
            each_task_accuracy[6],
            each_task_accuracy[7],
            each_task_accuracy[8],
            each_task_accuracy[9],
            average_accuracy_image,
            each_task_accuracy[10],
            each_task_accuracy[11],
            each_task_accuracy[12], 
            average_accuracy_video, 
            overall_accuracy]
        # pdb.set_trace()
        csv_data = pd.read_csv(CSV_DIR)
        col = csv_data.shape[0]
        csv_data.loc[col] = new_data
        csv_data = csv_data.to_csv(CSV_DIR, index=False)
    return 0

def get_baseline_df():
    df = pd.read_csv(CSV_DIR)
    return df

block = gr.Blocks()


with block:
    gr.Markdown(
        LEADERBORAD_INTRODUCTION
    )
    with gr.Tabs(elem_classes="tab-buttons") as tabs:
        with gr.TabItem("🏅 SEED Benchmark", elem_id="seed-benchmark-tab-table", id=0):
            with gr.Row():
                with gr.Accordion("Citation", open=False):
                    citation_button = gr.Textbox(
                        value=CITATION_BUTTON_TEXT,
                        label=CITATION_BUTTON_LABEL,
                        elem_id="citation-button",
                    ).style(show_copy_button=True)
    
            gr.Markdown(
                TABLE_INTRODUCTION
            )

            # selection for column part:
            checkbox_group = gr.CheckboxGroup(
                choices=TASK_INFO,
                value=TASK_INFO,
                label="Select options",
                interactive=True,
            )

            # 创建数据帧组件
            data_component = gr.components.Dataframe(
                value=get_baseline_df, 
                headers=COLUMN_NAMES,
                type="pandas", 
                datatype=DATA_TITILE_TYPE,
                interactive=False,
                visible=True,
                )
    
            def on_checkbox_group_change(selected_columns):
                # pdb.set_trace()
                selected_columns = [item for item in TASK_INFO if item in selected_columns]
                present_columns = MODEL_INFO + selected_columns
                updated_data = get_baseline_df()[present_columns]
                updated_headers = present_columns
                update_datatype = [DATA_TITILE_TYPE[COLUMN_NAMES.index(x)] for x in updated_headers]

                filter_component = gr.components.Dataframe(
                    value=updated_data, 
                    headers=updated_headers,
                    type="pandas", 
                    datatype=update_datatype,
                    interactive=False,
                    visible=True,
                    )
                # pdb.set_trace()
        
                return filter_component.value

            # 将复选框组关联到处理函数
            checkbox_group.change(fn=on_checkbox_group_change, inputs=checkbox_group, outputs=data_component)

        # table 2
        with gr.TabItem("📝 About", elem_id="seed-benchmark-tab-table", id=2):
            gr.Markdown(LEADERBORAD_INFO, elem_classes="markdown-text")
        
        # table 3 
        with gr.TabItem("🚀 Submit here! ", elem_id="seed-benchmark-tab-table", id=3):
            gr.Markdown(LEADERBORAD_INTRODUCTION, elem_classes="markdown-text")


            with gr.Row():
                gr.Markdown("# ✉️✨ Submit your model evaluation json file here!", elem_classes="markdown-text")

            with gr.Row():
                with gr.Column():
                    model_name_textbox = gr.Textbox(
                        label="Model name", placeholder="LLaMA-7B"
                        )
                    revision_name_textbox = gr.Textbox(
                        label="Revision Model Name", placeholder="LLaMA-7B"
                    )
                    model_type = gr.Dropdown(
                        choices=[                         
                            ModelType.PT.to_str(" : "),
                            ModelType.FT.to_str(" : "),
                            ModelType.IFT.to_str(" : "),
                            ModelType.RL.to_str(" : "), 
                        ], 
                        label="Model type", 
                        multiselect=False,
                        value=ModelType.FT.to_str(" : "),
                        interactive=True,
                    )
                    model_link = gr.Textbox(
                        label="Model Link", placeholder="https://huggingface.co/decapoda-research/llama-7b-hf"
                    )

                with gr.Column():
                    
                    LLM_type = gr.Dropdown(
                        choices=["Vicuna-7B", "Flan-T5-XL", "LLaMA-7B", "other"],
                        label="LLM type", 
                        multiselect=False,
                        value="LLaMA-7B",
                        interactive=True,
                    )
                    LLM_name_textbox = gr.Textbox(
                        label="LLM model (for other)",
                        value="LLaMA-13B"
                    )
                    Evaluation_dimension = gr.Dropdown(
                        choices=["All", "Image", "Video"],
                        label="Evaluation dimension", 
                        multiselect=False,
                        value="All",
                        interactive=True,
                    )

            with gr.Column():

                input_file = gr.inputs.File(label = "Click to Upload a json File", file_count="single", type='binary')
                submit_button = gr.Button("Submit Eval")
    
                submission_result = gr.Markdown()
                submit_button.click(
                    add_new_eval,
                    inputs = [
                        input_file,
                        model_name_textbox,
                        revision_name_textbox,
                        model_type,
                        model_link,
                        LLM_type,
                        LLM_name_textbox,
                        Evaluation_dimension,
                    ],
                    # outputs = submission_result,
                )


    with gr.Row():
        data_run = gr.Button("Refresh")
        data_run.click(
            get_baseline_df, outputs=data_component
        )

    # block.load(get_baseline_df, outputs=data_title)

block.launch()