Sem-nCG / encoder_models.py
nbansal's picture
Fix Title
27a1559
raw
history blame
4.5 kB
import abc
from typing import List, Union
from numpy.typing import NDArray
from sentence_transformers import SentenceTransformer
from .type_aliases import ENCODER_DEVICE_TYPE
class Encoder(abc.ABC):
@abc.abstractmethod
def encode(self, prediction: List[str]) -> NDArray:
"""
Abstract method to encode a list of sentences into sentence embeddings.
Args:
prediction (List[str]): List of sentences to encode.
Returns:
NDArray: Array of sentence embeddings with shape (num_sentences, embedding_dim).
Raises:
NotImplementedError: If the method is not implemented in the subclass.
"""
raise NotImplementedError("Method 'encode' must be implemented in subclass.")
class SBertEncoder(Encoder):
def __init__(self, model: SentenceTransformer, device: ENCODER_DEVICE_TYPE, batch_size: int, verbose: bool):
"""
Initialize SBertEncoder instance.
Args:
model (SentenceTransformer): The Sentence Transformer model instance to use for encoding.
device (Union[str, int, List[Union[str, int]]]): Device specification for encoding
batch_size (int): Batch size for encoding.
verbose (bool): Whether to print verbose information during encoding.
"""
self.model = model
self.device = device
self.batch_size = batch_size
self.verbose = verbose
def encode(self, prediction: List[str]) -> NDArray:
"""
Encode a list of sentences into sentence embeddings.
Args:
prediction (List[str]): List of sentences to encode.
Returns:
NDArray: Array of sentence embeddings with shape (num_sentences, embedding_dim).
"""
# SBert output is always Batch x Dim
if isinstance(self.device, list):
# Use multiprocess encoding for list of devices
pool = self.model.start_multi_process_pool(target_devices=self.device)
embeddings = self.model.encode_multi_process(prediction, pool=pool, batch_size=self.batch_size)
self.model.stop_multi_process_pool(pool)
else:
# Single device encoding
embeddings = self.model.encode(
prediction,
device=self.device,
batch_size=self.batch_size,
show_progress_bar=self.verbose,
)
return embeddings
def get_encoder(
sbert_model: SentenceTransformer,
device: ENCODER_DEVICE_TYPE,
batch_size: int,
verbose: bool,
) -> Encoder:
"""
Get an instance of SBertEncoder using the provided parameters.
Args:
sbert_model (SentenceTransformer): An instance of SentenceTransformer model to use for encoding.
device (Union[str, int, List[Union[str, int]]): Device specification for the encoder
(e.g., "cuda", 0 for GPU, "cpu").
batch_size (int): Batch size to use for encoding.
verbose (bool): Whether to print verbose information during encoding.
Returns:
SBertEncoder: Instance of the selected encoder based on the model_name.
Example:
>>> model_name = "paraphrase-distilroberta-base-v1"
>>> sbert_model = get_sbert_encoder(model_name)
>>> device = get_gpu("cuda")
>>> batch_size = 32
>>> verbose = True
>>> encoder = get_encoder(sbert_model, device, batch_size, verbose)
"""
encoder = SBertEncoder(sbert_model, device, batch_size, verbose)
return encoder
def get_sbert_encoder(model_name: str) -> SentenceTransformer:
"""
Get an instance of SentenceTransformer encoder based on the specified model name.
Args:
model_name (str): Name of the model to instantiate. You can use any model on Huggingface/SentenceTransformer
that is supported by SentenceTransformer.
Returns:
SentenceTransformer: Instance of the selected encoder based on the model_name.
Raises:
EnvironmentError: If an unsupported model_name is provided.
RuntimeError: If there's an issue during instantiation of the encoder.
"""
try:
encoder = SentenceTransformer(model_name, trust_remote_code=True)
except EnvironmentError as err:
raise EnvironmentError(str(err)) from None
except Exception as err:
raise RuntimeError(str(err)) from None
return encoder